Multi-ResAtt: Multilevel Residual Network With Attention for Human Activity Recognition Using Wearable Sensors

被引:91
|
作者
Al-qaness, Mohammed A. A. [1 ]
Dahou, Abdelghani [2 ,3 ]
Abd Elaziz, Mohamed [4 ,5 ,6 ]
Helmi, A. M. [7 ,8 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Univ Ahmed DRAIA, Fac Sci & Technol, Lab Dev Durable & Informat LDDI Lab, Adrar 01000, Algeria
[3] Univ Ahmed DRAIA, Dept Math & Comp Sci, Adrar 01000, Algeria
[4] Galala Univ, Fac Comp Sci & Engn, Suez 435611, Egypt
[5] Zagazig Univ, Dept Math, Fac Sci, Zagazig 44519, Egypt
[6] Ajman Univ, Artificial Intelligence Res Ctr, Ajman 346, U Arab Emirates
[7] Zagazig Univ, Fac Engn, Dept Comp & Syst Engn, Zagazig 44519, Egypt
[8] Buraydah Private Coll, Coll Engn & Informat Technol, Buraydah 51418, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Sensors; Deep learning; Feature extraction; Convolutional neural networks; Activity recognition; Residual neural networks; Informatics; Deep learning (DL); human activity recognition; Industry; 5; 0; Internet of Things (IoT); recurrent neural network (RNN); wearable sensors;
D O I
10.1109/TII.2022.3165875
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human activity recognition (HAR) applications have received much attention due to their necessary implementations in various domains, including Industry 5.0 applications such as smart homes, e-health, and various Internet of Things applications. Deep learning (DL) techniques have shown impressive performance in different classification tasks, including HAR. Accordingly, in this article, we develop a comprehensive HAR system based on a novel DL architecture called Multi-ResAtt (multilevel residual network with attention). This model incorporates initial blocks and residual modules aligned in parallel. Multi-ResAtt learns data representations on the inertial measurement units level. Multi-ResAtt integrates a recurrent neural network with attention to extract time-series features and perform activity recognition. We consider complex human activities collected from wearable sensors to evaluate the Multi-ResAtt using three public datasets, Opportunity; UniMiB-SHAR; and PAMAP2. Additionally, we compared the proposed Multi-ResAtt to several DL models and existing HAR systems, and it achieved significant performance.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [21] Convolutional Neural Networks for Human Activity Recognition Using Multi-location Wearable Sensors
    Deng S.-Z.
    Wang B.-T.
    Yang C.-G.
    Wang G.-R.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (03): : 718 - 737
  • [22] ResNet-SE: Channel Attention-Based Deep Residual Network for Complex Activity Recognition Using Wrist-Worn Wearable Sensors
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    Sitthithakerngkiet, Kanokwan
    Youplao, Phichai
    Yupapin, Preecha
    IEEE ACCESS, 2022, 10 : 51142 - 51154
  • [23] Multi-Branch Attention-Based Grouped Convolution Network for Human Activity Recognition Using Inertial Sensors
    Li, Yong
    Wang, Luping
    Liu, Fen
    ELECTRONICS, 2022, 11 (16)
  • [24] Application of Split Residual Multilevel Attention Network in Speaker Recognition
    Wang, Jiji
    Deng, Fei
    Deng, Lihong
    Gao, Ping
    Huang, Yuanxiang
    IEEE ACCESS, 2023, 11 : 89359 - 89368
  • [25] Weakly Supervised Human Activity Recognition From Wearable Sensors by Recurrent Attention Learning
    He, Jun
    Zhang, Qian
    Wang, Liqun
    Pei, Ling
    IEEE SENSORS JOURNAL, 2019, 19 (06) : 2287 - 2297
  • [26] Hierarchical Classifier for Improved Human Activity Recognition using Wearable Sensors
    Nematallah, Heba
    Rajan, Sreeraman
    2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024, 2024,
  • [27] Motion Primitive Forests for Human Activity Recognition Using Wearable Sensors
    Nguyen Ngoc Diep
    Cuong Pham
    Tu Minh Phuong
    PRICAI 2016: TRENDS IN ARTIFICIAL INTELLIGENCE, 2016, 9810 : 340 - 353
  • [28] Human Daily Activity Recognition With Sparse Representation Using Wearable Sensors
    Zhang, Mi
    Sawchuk, Alexander A.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2013, 17 (03) : 553 - 560
  • [29] A Deep Survey on Human Activity Recognition Using Mobile and Wearable Sensors
    Jameer S.
    Syed H.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [30] Robust Human Activity Recognition Using Lesser Number of Wearable Sensors
    Wang, Di
    Candinegara, Edwin
    Hou, Junhui
    Tan, Ah-Hwee
    Miao, Chunyan
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 290 - 295