Carbonized Yolk-shell Metal-Organic Frameworks for Electrochemical Conversion of CO2 into Ethylene

被引:7
|
作者
Wang Renquan [1 ]
Li Tiantian [1 ]
Gao Rui [1 ]
Qin Jiaqi [1 ]
Li Mengyao [1 ]
Guo Yizheng [1 ]
Song Yujiang [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
关键词
CO2; Cu MOF; Electrocatalyst; Nitrogen; Ethylene; OXYGEN REDUCTION REACTION; ELECTROCATALYTIC REDUCTION; HIGHLY EFFICIENT; ELECTROREDUCTION; NANOPARTICLES; OXIDATION; PYROLYSIS; CATALYST; CARRIERS; DIOXIDE;
D O I
10.1007/s40242-022-2149-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the excessive consumption of fossil fuels and the massive emission of CO2, it has led to a series of environmental crises posing a serious threat to sustainable development. Electrochemical CO2 reduction reaction (CO2RR) to ethylene helps solve these serious environmental crises. Herein, we report the synthesis of a copper-based electrocatalyst by pyrolysis of yolk-shell structured HKUST-1 with partial substitution of trimesic acid by benzimidazole(nitrogen source). The electrocatalyst exhibits an ethylene Faradic efficiency(FE) of 25.8% and a partial ethylene current density of 23.7 mA/cm(2), in addition, the electrocatalyst can maintain stable performance during 10 h of electrolysis, which are all better than those of the electrocatalyst without nitrogen dopant. According to electrochemical measurements and X-ray photoelectron spectroscopy(XPS), we propose that the nitrogen dopant plays an effective role in stabilizing Cu(I) species and promoting CO2 molecules activation, as well as suppressing the reduction of Cu(I) species during electrolysis. Eventually, the performance of the electrocatalyst toward CO2 RR is studied in a flow cell. This work provides a new route for the design of Cu-based electrocatalyst toward electrochemical CO2 conversion into ethylene.
引用
收藏
页码:246 / 252
页数:7
相关论文
共 50 条
  • [21] Progress on Cu-based metal-organic frameworks for high-efficiency electrochemical CO2 conversion
    Kong, Can
    Jiang, Guofei
    Sheng, Yu
    Liu, YuHan
    Gao, Fei
    Liu, Fang
    Duan, Xiaoguang
    CHEMICAL ENGINEERING JOURNAL, 2023, 460
  • [22] Metal-organic framework derived copper catalysts for CO2 to ethylene conversion
    Yao, Kaili
    Xia, Yujian
    Li, Jun
    Wang, Ning
    Han, Jingrui
    Gao, Congcong
    Han, Mei
    Shen, Guoqiang
    Liu, Yongchang
    Seifitokaldani, Ali
    Sun, Xuhui
    Liang, Hongyan
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (22) : 11117 - 11123
  • [23] Application of metal-organic frameworks in CO2 hydrogenation
    Zhou C.
    Nan Y.-Y.
    Zha F.
    Tian H.-F.
    Tang X.-H.
    Chang Y.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2021, 49 (10): : 1444 - 1457
  • [24] Utilizing metal-organic frameworks for CO2 separation
    Farha, Omar K.
    Hupp, Joseph T.
    Wilmer, Christopher E.
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [25] Research on Metal-organic Frameworks for CO2 Capture
    Xin, Chunling
    Wang, Suqing
    Yan, Yongmei
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON MECHATRONICS, COMPUTER AND EDUCATION INFORMATIONIZATION (MCEI 2017), 2017, 75 : 151 - 154
  • [26] Thermodynamics of CO2 capture in metal-organic frameworks
    Wu, Di
    Gassensmith, Jeremiah
    McDonald, Thomas
    Guo, Xiaofeng
    Quan, Zewei
    Ushakov, Sergey
    Zhang, Peng
    Long, Jeffrey
    Navrotsky, Alexandra
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [27] The metal-organic frameworks as unique platform for photocatalytic CO2 conversion to liquid fuels
    Xu, Xiahong
    Xie, Kangle
    Hu, Junjie
    Liu, Suijun
    Zhong, Hong
    Wen, He-Rui
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [28] Metal-Organic Frameworks for CO2 Chemical Transformations
    He, Hongming
    Perman, Jason A.
    Zhu, Guangshan
    Ma, Shengqian
    SMALL, 2016, 12 (46) : 6309 - 6324
  • [29] Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels
    Ezugwu, Chizoba, I
    Liu, Shengwei
    Li, Chuanhao
    Zhuiykov, Serge
    Roy, Soumyajit
    Verpoort, Francis
    COORDINATION CHEMISTRY REVIEWS, 2022, 450
  • [30] A pyrocarbonate intermediate for CO2 activation and selective conversion in bifunctional metal-organic frameworks
    An, Bing
    Meng, Yaping
    Li, Zhe
    Hong, Yahui
    Wang, Tingting
    Wang, Shuai
    Lin, Jingdong
    Wang, Cheng
    Wan, Shaolong
    Wang, Yong
    Lin, Wenbin
    JOURNAL OF CATALYSIS, 2019, 373 : 37 - 47