Efficient Quantum-Dot Light-Emitting Diodes Based on Solvent- Annealed SnO2 Electron-Transport Layers

被引:9
|
作者
Wang, Yuechao [1 ]
Zhang, Hanzhuang [1 ]
Ji, Wenyu [1 ]
机构
[1] Jilin Univ, Dept Phys, Key Lab Phys & Technolog Adv Batteries y, Minist Educ, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum-dot light-emitting diodes; SnO2; solvent vapor annealing; electron transport layer; shelf stability; HIGHLY EFFICIENT; DEVICES; ELECTROLUMINESCENCE;
D O I
10.1021/acsaelm.2c01560
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the sensitivity of ZnO nanoparticles to water and oxygen, the hybrid quantum-dot light-emitting devices (QLEDs) based on ZnO electron-transport layers (ETLs) suffer from shelf stability and uncontrollable positive aging problems. Tin oxide (SnO2) is considered as an ideal alternative to ZnO as the ETL in QLEDs to improve their shelf stability. Currently, the SnO2-based device still suffers from poor efficiency. Herein solvent vapor annealing (SVA) is employed to reduce the roughness of SnO2 nanoparticle films, which suppresses the leakage current and enhances the device performance. Compared with the device with pristine SnO2, the maximum brightness and current efficiency (10.8 cd/A) of QLEDs based on solvent vapor annealed SnO2 are enhanced by 25.3% and 36.6%, respectively, being comparable to the ZnO device (11.0 cd/A). Moreover, SVA processing also has a positive effect on the device shelf stability, which is attributed to the dense interface between SnO2 and quantum dots due to the reduced surface roughness of SnO2 films.
引用
收藏
页码:537 / 543
页数:7
相关论文
共 50 条
  • [41] Ultrahigh-resolution quantum-dot light-emitting diodes
    Tingtao Meng
    Yueting Zheng
    Denglin Zhao
    Hailong Hu
    Yangbin Zhu
    Zhongwei Xu
    Songman Ju
    Jipeng Jing
    Xiang Chen
    Hongjin Gao
    Kaiyu Yang
    Tailiang Guo
    Fushan Li
    Junpeng Fan
    Lei Qian
    Nature Photonics, 2022, 16 : 297 - 303
  • [42] Exploring performance degradation of quantum-dot light-emitting diodes
    Liu, Aqiang
    Cheng, Chunyan
    Tian, Jianjun
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (22) : 8642 - 8649
  • [43] Transient Leakage Electroluminescence of Quantum-Dot Light-Emitting Diodes
    Zhao, Shiqi
    Bai, Peng
    Zhao, Xiaofei
    Li, Guangru
    NANO LETTERS, 2024, 24 (41) : 12981 - 12987
  • [44] A review on the electroluminescence properties of quantum-dot light-emitting diodes
    Yuan, Qilin
    Wang, Ting
    Yu, Panlong
    Zhang, Hanzhuang
    Zhang, Han
    Ji, Wenyu
    ORGANIC ELECTRONICS, 2021, 90 (90)
  • [45] A dC/dV Measurement for Quantum-Dot Light-Emitting Diodes
    马精瑞
    唐浩东
    瞿祥炜
    项国洪
    贾思琪
    刘湃
    王恺
    孙小卫
    Chinese Physics Letters, 2022, 39 (12) : 125 - 134
  • [46] Scaling quantum-dot light-emitting diodes to submicrometer sizes
    Fiore, A
    Chen, JX
    Ilegems, M
    APPLIED PHYSICS LETTERS, 2002, 81 (10) : 1756 - 1758
  • [47] Memory-Enabled Quantum-Dot Light-Emitting Diodes
    Meng, Lingyu
    Bai, Jialin
    Zhou, Taiying
    Yu, Rongmei
    Wang, Lei
    Ji, Wenyu
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (06): : 1726 - 1733
  • [48] Ultrahigh-resolution quantum-dot light-emitting diodes
    Meng, Tingtao
    Zheng, Yueting
    Zhao, Denglin
    Hu, Hailong
    Zhu, Yangbin
    Xu, Zhongwei
    Ju, Songman
    Jing, Jipeng
    Chen, Xiang
    Gao, Hongjin
    Yang, Kaiyu
    Guo, Tailiang
    Li, Fushan
    Fan, Junpeng
    Qian, Lei
    NATURE PHOTONICS, 2022, 16 (04) : 297 - +
  • [49] Resistive switching functional quantum-dot light-emitting diodes
    Park, Young Ran
    Choi, Won Kook
    Hong, Young Joon
    CURRENT APPLIED PHYSICS, 2019, 19 (02) : 102 - 107
  • [50] Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes
    Su, Qiang
    Sun, Yizhe
    Zhang, Heng
    Chen, Shuming
    ADVANCED SCIENCE, 2018, 5 (10):