Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis

被引:8
|
作者
Wei, Zhen [1 ,3 ]
Chen, Jinling [2 ]
Xu, Linxiang [1 ,3 ]
Liu, Nannan [1 ,3 ]
Yang, Jie [1 ,2 ]
Wang, Shujun [1 ,2 ]
机构
[1] Jiangsu Ocean Univ, Coinnovat Ctr Jiangsu Marine Bioind Technol, Jiangsu Key Lab Marine Bioresources & Environm, Lianyungang 222005, Peoples R China
[2] Jiangsu Ocean Univ, Sch Food Sci & Engn, Lianyungang 222005, Peoples R China
[3] Jiangsu Ocean Univ, Jiangsu Inst Marine Resources Dev, Lianyungang 222005, Peoples R China
关键词
Dextranase; Thermostability; Arthrobacter oxydans; Site-directed mutagenesis; GH49; THERMOPHILIC DEXTRANASE; CRYSTAL-STRUCTURE; PROTEIN; STABILITY; TEMPERATURE; PREVENTION;
D O I
10.1186/s13568-023-01513-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
As an indispensable enzyme for the hydrolysis of dextran, dextranase has been widely used in the fields of food and medicine. It should be noted that the weak thermostability of dextranase has become a restricted factor for industrial applications. This study aims to improve the thermostability of dextranase AoDex in glycoside hydrolase (GH) family 49 that derived from Arthrobacter oxydans KQ11. Some mutants were predicted and constructed based on B-factor analysis, PoPMuSiC and HotMuSiC algorithms, and four mutants exhibited higher heat resistance. Compared with the wild-type, mutant S357P showed the best improved thermostability with a 5.4-fold increase of half-life at 60 degrees C, and a 2.1-fold increase of half-life at 65 degrees C. Furthermore, S357V displayed the most obvious increase in enzymatic activity and thermostability simultaneously. Structural modeling analysis indicated that the improved thermostability of mutants might be attributed to the introduction of proline and hydrophobic effects, which generated the rigid optimization of the structural conformation. These results illustrated that it was effective to improve the thermostability of dextranase AoDex by rational design and site-directed mutagenesis. The thermostable mutant of dextranase AoDex has potential application value, and it can also provide references for engineering other thermostable dextranases of the GH49 family.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Computer-aided optimization of site-directed mutagenesis of Bacillus stearothermophilus neutral protease for improving thermostability
    Nakai, S.
    Nakamura, S.
    Ogawa, M.
    ACS Symposium Series, 708 : 19 - 35
  • [22] Improvement of the thermostability and enzymatic activity of cholesterol oxidase by site-directed mutagenesis
    Yan Sun
    Hailing Yang
    Wu Wang
    Biotechnology Letters, 2011, 33 : 2049 - 2055
  • [23] Improving the thermostability of raw-starch-digesting amylase from a Cytophaga sp by site-directed mutagenesis
    Shiau, RJ
    Hung, HC
    Jeang, CL
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (04) : 2383 - 2385
  • [24] Site-Directed Mutagenesis
    Bachman, Julia
    LABORATORY METHODS IN ENZYMOLOGY: DNA, 2013, 529 : 241 - 248
  • [25] SITE-DIRECTED MUTAGENESIS
    SMITH, M
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 317 (1540): : 295 - 304
  • [26] SITE-DIRECTED MUTAGENESIS
    ECKSTEIN, F
    CHEMIE IN UNSERER ZEIT, 1993, 27 (06) : 289 - 290
  • [27] SITE-DIRECTED MUTAGENESIS
    CARTER, P
    BIOCHEMICAL JOURNAL, 1986, 237 (01) : 1 - 7
  • [28] SITE-DIRECTED MUTAGENESIS
    STEVENS, CF
    TRENDS IN NEUROSCIENCES, 1984, 7 (09) : 306 - 307
  • [29] Site-directed mutagenesis
    Ishii, TM
    Zerr, P
    Xia, XM
    Bond, CT
    Maylie, J
    Adelman, JP
    ION CHANNELS, PT B, 1998, 293 : 53 - 71
  • [30] SITE-DIRECTED MUTAGENESIS
    FLAVELL, R
    SABO, D
    BANDLE, E
    WEISSMANN, C
    EXPERIENTIA, 1974, 30 (06): : 702 - 702