Thermal decomposition kinetics and mechanism of poly(ethylene 2,5-furan dicarboxylate) Nanocomposites for food packaging applications

被引:1
|
作者
Stanley, Johan [1 ]
Tarani, Evangelia [2 ]
Ainali, Nina Maria [1 ]
Zemljic, Lidija Fras [3 ]
Chrissafis, Konstantinos [2 ]
Lambropoulou, Dimitra A. [4 ,5 ]
Bikiaris, Dimitrios N. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Chem, Lab Chem & Technol Polymers & Colors, GR-54124 Thessaloniki, Greece
[2] Aristotle Univ Thessaloniki, Sch Phys, Lab Adv Mat & Devices, GR-54124 Thessaloniki, Greece
[3] Univ Maribor, Fac Mech Engn, Maribor SI-2000, Slovenia
[4] Aristotle Univ Thessaloniki, Dept Chem, Lab Environm Pollut Control, GR-54124 Thessaloniki, Greece
[5] Balkan Ctr, Ctr Interdisciplinary Res & Innovat CIRI AUTH, GR-57001 Thessaloniki, Greece
关键词
Bio based polymers; Poly(ethylene 2,5-furan dicarboxylate); Nanoparticles; Nanocomposites; Thermal properties; Decomposition mechanism; DEGRADATION; POLYESTERS; POLYSTYRENE; COMPOSITES; RELAXATION; BEHAVIOR; ACID;
D O I
10.1016/j.tca.2024.179700
中图分类号
O414.1 [热力学];
学科分类号
摘要
Poly(ethylene 2,5-furan dicarboxylate) (PEF) based nanocomposites containing different nanoparticles like Ag, TiO2, ZnO, ZrO2 Ce-Bioglass, have been synthesized via in-situ polymerization techniques targeting food packaging applications. Zeta potential measurements showed an increase in the negative zeta potential value due to an increase in the surface charge density of the nanocomposites. Thermogravimetric analysis results proved that, except PEF-ZnO nanocomposite, all the other nanocomposites exhibited good resistance to thermal degradation without serious mass loss until 330 degrees C. Thermal decomposition kinetic analysis and the dependence of activation energy on the degree of conversion (alpha), indicated that the presence of ZnO nanoparticles influences, the degradation mechanism of PEF. In contrast, the presence of Ce-Bioglass nanoparticles leads to a slower degradation process, contributing to the enhanced resistance to thermal degradation of the PEF-Bioglass nanocomposite. The thermal degradation mechanism of PEF nanocomposites analyzed by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) indicated that the primary thermal degradation mechanism for the studied nanocomposites was beta-hydrogen bond scission, while to a lesser extent, alpha-hydrogen bond scission products were noted in PEF-TiO2 and PEF-ZrO2 nanocomposites.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Thermal decomposition kinetics and characterization of poly(butylene 2,5-furandicarboxylate)/Cloisite 30B composites
    Bong-Sang Cho
    Myeong-Jun Kim
    Suel-Ki Jung
    Shin Choon Kang
    Korean Journal of Chemical Engineering, 2016, 33 : 3267 - 3272
  • [42] In-situ synthesis, thermal and mechanical properties of biobased poly (ethylene 2,5-furandicarboxylate)/montmorillonite (PEF/MMT) nanocomposites
    Xie, Hongzhou
    Meng, Hongxu
    Wu, Linbo
    Li, Bo-Geng
    Dubois, Philippe
    EUROPEAN POLYMER JOURNAL, 2019, 121
  • [43] Incorporation of Poly(ethylene 2,5-furanoate) into Poly(butylene adipate-co-terephthalate) toward Sustainable Food Packaging Films with Enhanced Strength and Barrier Properties
    Wang, Bo
    Wei, Chang
    Li, Chao
    Sang, Lin
    Wang, Lei
    Wei, Zhiyong
    Qi, Min
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (02) : 597 - 606
  • [44] Biobased and Compostable Multiblock Copolymer of Poly(L-lactic acid) Containing 2,5-Furandicarboxylic Acid for Sustainable Food Packaging: The Role of Parent Homopolymers in the Composting Kinetics and Mechanism
    Bianchi, Enrico
    Guidotti, Giulia
    Soccio, Michelina
    Siracusa, Valentina
    Gazzano, Massimo
    Salatelli, Elisabetta
    Lotti, Nadia
    BIOMACROMOLECULES, 2023, 24 (05) : 2356 - 2368
  • [46] Thermal degradation kinetics and decomposition mechanism of polyesters based on 2,5-furandicarboxylic acid and low molecular weight aliphatic diols
    Tsanaktsis, Vasilios
    Vouvoudi, Evangelia
    Papageorgiou, George Z.
    Papageorgiou, Dimitrios G.
    Chrissafis, Konstantinos
    Bikiaris, Dimitrios N.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2015, 112 : 369 - 378
  • [47] Development of a series of biobased poly(ethylene 2,5-furandicarboxylate-co-(5,5′-((phenethylazanediyl)bis(methylene))bis(furan-5,2-diyl))dimethylene 2,5-furandicarboxylate) copolymers via a sustainable and mild route: promising "breathing" food packaging materials
    Yi, Jing
    Li, Yuxuan
    Zhao, Yuhao
    Xu, Zhanwei
    Wu, Yuanpeng
    Jiang, Min
    Zhou, Guangyuan
    GREEN CHEMISTRY, 2022, 24 (13) : 5181 - 5190
  • [48] Thermal degradation of biobased polyesters: Kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols
    Terzopoulou, Zoe
    Tsanaktsis, Vasilios
    Nerantzaki, Maria
    Achilias, Dimitris S.
    Vaimakis, Tiverios
    Papageorgiou, George Z.
    Bikiaris, Dimitrios N.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 117 : 162 - 175
  • [49] Mechanical properties, gas permeability and biodegradation mechanism of biobased poly(ester amide)s from 2,5-furandicarboxylic acid and amido diols for sustainable food packaging
    Bianchi, Enrico
    Papadopoulos, Lazaros
    Soccio, Michelina
    Siracusa, Valentina
    Gazzano, Massimo
    Robert, Tobias
    Bikiaris, Dimitrios N.
    Lotti, Nadia
    POLYMER DEGRADATION AND STABILITY, 2024, 230
  • [50] Optical, thermal, mechanical, and antibacterial properties of polyvinyl alcohol/sodium alginate/ZnMn 2 O 4 nanocomposites films for various optical devices and food packaging applications
    Alghamdi, Azzah M.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 271