Bioinspired Hydrophobicity for Enhancing Electrochemical CO2 Reduction

被引:8
|
作者
Bai, Jingwen [1 ,2 ]
Wang, Wenshuo [2 ]
Liu, Jian [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Shandong Energy Inst, Qingdao New Energy Shandong Lab, R China, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; electrochemistry; local concentration; enrichment; hydrophobic effect; GAS-DIFFUSION ELECTRODES; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE REDUCTION; ELECTROREDUCTION PERFORMANCE; OXYGEN VACANCIES; EFFICIENT; CU; CONVERSION; ETHYLENE; CATALYST;
D O I
10.1002/chem.202302461
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical carbon dioxide reduction (CO2R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2]) as well as the water and ion transport at the CO2-electrolyte-catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the "plastron effect", which could inspire the reliable design of CO2R catalysts and devices to enrich gaseous CO2. In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2R toward practical applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A Short Perspective on Electrochemical CO2 Reduction to CO
    Tarrago, Maxime
    Ye, Shengfa
    CHIMIA, 2020, 74 (06) : 478 - 482
  • [22] Catalysts for efficient electrochemical reduction of CO2 to CO
    Kenis, Paul J. A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [23] Cu nanowires for electrochemical reduction of CO2 and CO
    Raciti, David
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [24] Superstructured metallocorroles for electrochemical CO2 reduction
    Sinha, Woormileela
    Mahammed, Atif
    Fridman, Natalia
    Diskin-Posner, Yael
    Shimon, Linda J. W.
    Gross, Zeev
    CHEMICAL COMMUNICATIONS, 2019, 55 (79) : 11912 - 11915
  • [25] Ionic liquids for CO2 electrochemical reduction
    Li, Fangfang
    Mocci, Francesca
    Zhang, Xiangping
    Ji, Xiaoyan
    Laaksonen, Aatto
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 31 : 75 - 93
  • [26] Effect of Electrolyte on the Electrochemical Reduction of CO2
    Salazar-Villalpando, Maria D.
    ELECTROCHEMISTRY OF NOVEL MATERIALS FOR ENERGY STORAGE AND CONVERSION, 2011, 33 (27): : 77 - 88
  • [27] Electrolyte Effects on the Electrochemical Reduction of CO2
    Moura de Salles Pupo, Marilia
    Kortlever, Ruud
    CHEMPHYSCHEM, 2019, 20 (22) : 2926 - 2935
  • [28] Effect of the electrolyte on electrochemical CO2 reduction
    Chan, Karen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [29] Theoretical investigations in CO2 electrochemical reduction
    Chan, Karen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [30] Ionic liquids for CO2 electrochemical reduction
    Fangfang Li
    Francesca Mocci
    Xiangping Zhang
    Xiaoyan Ji
    Aatto Laaksonen
    ChineseJournalofChemicalEngineering, 2021, 31 (03) : 75 - 93