Bioinspired Hydrophobicity for Enhancing Electrochemical CO2 Reduction

被引:8
|
作者
Bai, Jingwen [1 ,2 ]
Wang, Wenshuo [2 ]
Liu, Jian [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Shandong Energy Inst, Qingdao New Energy Shandong Lab, R China, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; electrochemistry; local concentration; enrichment; hydrophobic effect; GAS-DIFFUSION ELECTRODES; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE REDUCTION; ELECTROREDUCTION PERFORMANCE; OXYGEN VACANCIES; EFFICIENT; CU; CONVERSION; ETHYLENE; CATALYST;
D O I
10.1002/chem.202302461
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical carbon dioxide reduction (CO2R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2]) as well as the water and ion transport at the CO2-electrolyte-catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the "plastron effect", which could inspire the reliable design of CO2R catalysts and devices to enrich gaseous CO2. In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2R toward practical applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hydrophobicity Graded Gas Diffusion Layer for Stable Electrochemical Reduction of CO2
    Li, Linbo
    Chen, Jun
    Mosali, Venkata Sai Sriram
    Liang, Yan
    Bond, Alan M.
    Gu, Qinfen
    Zhang, Jie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (39)
  • [2] Enhancing Electrochemical Reduction of CO2 to Formate by Regulating the Support Morphology
    赵秀慧
    卓德煌
    陈青松
    郭国聪
    Chinese Journal of Structural Chemistry, 2021, 40 (03) : 376 - 382
  • [3] ELECTROCHEMICAL REDUCTION OF CO2
    KUHN, AT
    BRITISH CHEMICAL ENGINEERING, 1971, 16 (01): : 39 - &
  • [4] Enhancing Electrochemical Reduction of CO2 to Formate by Regulating the Support Morphology(1)
    Zhao Xiu-Hui
    Zhuo De-Huang
    Chen Qing-Song
    Guo Guo-Cong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2021, 40 (03) : 376 - 382
  • [5] Engineering hydrophobicity and high-index planes of gold nanostructures for highly selective electrochemical CO2 reduction to CO and efficient CO2 capture
    Kwon, Taehui
    Prabhakaran, Sampath
    Kim, Do Hwan
    Kim, Myung Hwa
    Lee, Youngmi
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [6] Promoting CO2 Dynamic Activation via Micro-Engineering Technology for Enhancing Electrochemical CO2 Reduction
    Gong, Shanhe
    Yang, Shaokang
    Wang, Wenbo
    Lu, Runqing
    Wang, Haotan
    Han, Xu
    Wang, Guilong
    Xie, Jimin
    Rao, Dewei
    Wu, Chundu
    Liu, Jun
    Shao, Shouyan
    Lv, Xiaomeng
    SMALL, 2023, 19 (26)
  • [7] ELECTROCHEMICAL REDUCTION OF CO2 TO METHANE
    FRESE, KW
    SUMMERS, DP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 191 : 95 - COLL
  • [8] MEDIATED ELECTROCHEMICAL REDUCTION OF CO2
    DUBOIS, DL
    MIEDANER, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 191 : 92 - COLL
  • [9] Electrochemical reduction of CO2 to fuels
    Bell, Alexis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [10] Simulation of the electrochemical reduction of CO2
    Bell, Alexis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257