Low-velocity impact response and compression behaviour after the impact of 3D-printed CCFR self-sensing honeycomb structures

被引:21
|
作者
Ye, Wenguang [1 ,2 ]
Cheng, Yunyong [1 ,2 ]
Dou, Hao [1 ,2 ]
Zhang, Dinghua [1 ,2 ]
Yang, Fuqiang [1 ,2 ]
Li, Zhixiang [1 ,2 ]
Cai, Wenfeng [3 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Engn Res Ctr Adv Mfg Technol Aero Engine, Minist Educ, Xian 710072, Peoples R China
[3] Xian ASN Technol Grp Co Ltd, Xian 710065, Peoples R China
关键词
3D printing; Honeycomb; Low-velocity impact; Compression after impact; Self-sensing; CONTINUOUS CARBON; COMPOSITES; DAMAGE; CFRP;
D O I
10.1016/j.compositesb.2023.110992
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continuous-carbon-fibre-reinforced (CCFR) honeycomb structures with self-sensing abilities were fabricated by three-dimensional (3D) printing. Pure polylactic acid (PLA) honeycombs of the same size were also fabricated for comparison. Low-velocity impact (LVI) tests and compression after impact (CAI) tests were conducted. Cone beam computed tomography (CBCT) and scanning electron microscope (SEM) were employed to investigate the corresponding damage mechanisms. The LVI test results showed that the presence of continuous carbon fibre effectively inhibited the generation and propagation of the damage in the matrix during impact, which allowed the CCFR honeycomb structure to have better low-velocity impact resistance, especially for repeated impacts with small energies. In contrast to the PLA honeycomb, the CAI test results showed that the CCFR honeycomb still retained good specific compression strength and specific energy absorption properties even after experiencing impacts. Furthermore, the continuous carbon fibre integrated into the CCFR honeycomb could be used as a sensor element to realize the in-situ structural health monitoring during impact and compression. The 3Dprinted CCFR honeycomb structure, investigated in this research, demonstrates remarkable mechanical performance and self-sensing capabilities both during LVI and CAI tests, which highlights the vast potential of 3Dprinted CCFR honeycomb for diverse applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Low-Velocity Impact and Compression-After-Impact Behaviour of Flax Fibre-Reinforced Composites
    Yan Li
    Junjie Zhong
    Kunkun Fu
    Acta Mechanica Solida Sinica, 2020, 33 : 431 - 448
  • [22] Finite-Element Modeling and Optimization of 3D-Printed Auxetic Reentrant Structures with Stiffness Gradient under Low-Velocity Impact
    Baertsch, Florian
    Ameli, Amir
    Mayer, Thomas
    JOURNAL OF ENGINEERING MECHANICS, 2021, 147 (07)
  • [23] Research on low-velocity impact resistance of spherical honeycomb sandwich structures
    Deng, Yunfei
    Niu, Yijie
    Du, Chunzhi
    THIN-WALLED STRUCTURES, 2024, 204
  • [24] Performance of 3D-Printed Bionic Conch-Like Composite Plate under Low-Velocity Impact
    Wan, Mincen
    Hu, Dayong
    Pei, Baoqing
    MATERIALS, 2022, 15 (15)
  • [25] Scaling of low-velocity impact response in composite structures
    Christoforou, Andreas P.
    Yigit, Ahmet S.
    COMPOSITE STRUCTURES, 2009, 91 (03) : 358 - 365
  • [26] The response of honeycomb sandwich panels under low-velocity impact loading
    Meo, M
    Vignjevic, R
    Marengo, G
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2005, 47 (09) : 1301 - 1325
  • [27] Low-velocity impact behavior of 3D woven structural honeycomb composite
    Tripathi, Lekhani
    Chowdhury, Soumya
    Behera, Bijoya Kumar
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (19) : 4511 - 4526
  • [28] Modelling of low-velocity impact and compression after impact of CFRP at elevated temperatures
    Koerbelin, Johann
    Junge, Nilas
    Fiedler, Bodo
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 147
  • [29] Compression strength of stitched laminates after low-velocity impact
    Cheng, XQ
    Al-mansour, AM
    Li, ZN
    Kou, CH
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2005, 24 (09) : 935 - 947
  • [30] Failure assessment of 3D woven composites under compression after low-velocity impact
    Sun, Jin
    Dai, Yunfeng
    Huang, Linhai
    Zhao, Junhua
    MATERIALS RESEARCH EXPRESS, 2022, 9 (10)