Low-velocity impact response and compression behaviour after the impact of 3D-printed CCFR self-sensing honeycomb structures

被引:21
|
作者
Ye, Wenguang [1 ,2 ]
Cheng, Yunyong [1 ,2 ]
Dou, Hao [1 ,2 ]
Zhang, Dinghua [1 ,2 ]
Yang, Fuqiang [1 ,2 ]
Li, Zhixiang [1 ,2 ]
Cai, Wenfeng [3 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Engn Res Ctr Adv Mfg Technol Aero Engine, Minist Educ, Xian 710072, Peoples R China
[3] Xian ASN Technol Grp Co Ltd, Xian 710065, Peoples R China
关键词
3D printing; Honeycomb; Low-velocity impact; Compression after impact; Self-sensing; CONTINUOUS CARBON; COMPOSITES; DAMAGE; CFRP;
D O I
10.1016/j.compositesb.2023.110992
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continuous-carbon-fibre-reinforced (CCFR) honeycomb structures with self-sensing abilities were fabricated by three-dimensional (3D) printing. Pure polylactic acid (PLA) honeycombs of the same size were also fabricated for comparison. Low-velocity impact (LVI) tests and compression after impact (CAI) tests were conducted. Cone beam computed tomography (CBCT) and scanning electron microscope (SEM) were employed to investigate the corresponding damage mechanisms. The LVI test results showed that the presence of continuous carbon fibre effectively inhibited the generation and propagation of the damage in the matrix during impact, which allowed the CCFR honeycomb structure to have better low-velocity impact resistance, especially for repeated impacts with small energies. In contrast to the PLA honeycomb, the CAI test results showed that the CCFR honeycomb still retained good specific compression strength and specific energy absorption properties even after experiencing impacts. Furthermore, the continuous carbon fibre integrated into the CCFR honeycomb could be used as a sensor element to realize the in-situ structural health monitoring during impact and compression. The 3Dprinted CCFR honeycomb structure, investigated in this research, demonstrates remarkable mechanical performance and self-sensing capabilities both during LVI and CAI tests, which highlights the vast potential of 3Dprinted CCFR honeycomb for diverse applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Investigating the low-velocity impact behaviour of sandwich composite structures with 3D-printed hexagonal honeycomb core-a review
    Ainin, F. Nur
    Azaman, M. D.
    Majid, M. S. Abdul
    Ridzuan, M. J. M.
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2023, 5 (01):
  • [2] Low-velocity impact response of 3D-printed lattice structure with foam reinforcement
    Kao, Yi-Tang
    Amin, Anish Ravindra
    Payne, Nolan
    Wang, Jyhwen
    Tai, Bruce L.
    COMPOSITE STRUCTURES, 2018, 192 : 93 - 100
  • [3] Low-velocity impact behaviour of titanium honeycomb sandwich structures
    Xie, Zonghong
    Zhao, Wei
    Wang, Xinnian
    Hang, Jiutao
    Yue, Xishan
    Zhou, Xiang
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2018, 20 (08) : 1009 - 1027
  • [4] Low-velocity impact response and compression after impact behavior of tubular composite sandwich structures
    Zhang, Chao
    Tan, K. T.
    COMPOSITES PART B-ENGINEERING, 2020, 193
  • [5] Low-velocity impact performance of 3D-printed PLA/Epoxy/Glass fibers of composite structures and latches
    Al-Areqi, Ammar Mustafa
    Aloyaydi, Bandar
    Subbarayan, Sivasankaran
    Al-Mufadi, Fahad A.
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [6] A Computational Approach in Understanding the Low-Velocity Impact Behavior and Damage of 3D-Printed Polymer Lattice Structures
    Abdalsalam Fadeel
    Hasanain Abdulhadi
    Raghavan Srinivasan
    Ahsan Mian
    Journal of Materials Engineering and Performance, 2021, 30 : 6511 - 6521
  • [7] A Computational Approach in Understanding the Low-Velocity Impact Behavior and Damage of 3D-Printed Polymer Lattice Structures
    Fadeel, Abdalsalam
    Abdulhadi, Hasanain
    Srinivasan, Raghavan
    Mian, Ahsan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (09) : 6511 - 6521
  • [8] Particularities on the Low-Velocity Impact Behavior of 3D-Printed Sandwich Panels with Re-Entrant and Honeycomb Core Topologies
    Indres, Andrei Ioan
    Constantinescu, Dan Mihai
    Mocian, Oana Alexandra
    Sorohan, Stefan
    JOURNAL OF COMPOSITES SCIENCE, 2024, 8 (10):
  • [9] Multi-Objective Optimization of Low-Velocity Impact and Compression Behavior of 3D-Printed PLA Cubic Samples
    Dogan, Oguz
    Kamer, Muhammed S.
    Sahan, Mehmet F.
    POLYMERS, 2025, 17 (05)
  • [10] Modelling low-velocity impact damage and compression after impact of 3D woven structures considering compaction
    Millen, S. L. J.
    Dahale, M.
    Fisher, T.
    Samy, A.
    Thompson, K.
    Ramaswamy, K.
    Ralph, C.
    Archer, E.
    McIlhagger, A.
    Ullah, Z.
    Falzon, B. G.
    COMPOSITE STRUCTURES, 2023, 318