Polynomial growth and asymptotic dimension

被引:0
|
作者
Papasoglu, Panos [1 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg,Radcliffe Observ Quarter 550,Woo, Oxford OX2 6GG, England
关键词
NAGATA DIMENSION;
D O I
10.1007/s11856-023-2479-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bonamy et al. [4] showed that graphs of polynomial growth have finite asymptotic dimension. We refine their result showing that a graph of polynomial growth strictly less than n(k+1) has asymptotic dimension at most k. As a corollary Riemannian manifolds of bounded geometry and polynomial growth strictly less than n(k+1) have asymptotic dimension at most k.We show also that there are graphs of growth < n(1+epsilon) for any epsilon > 0 and infinite asymptotic Assouad-Nagata dimension.
引用
收藏
页码:985 / 1000
页数:16
相关论文
共 50 条
  • [41] ASYMPTOTIC AVERAGE DEGREE OF AN AUGMENTED POLYNOMIAL
    BOWER, EK
    SULLIVAN, DD
    DWYER, SJ
    INFORMATION AND CONTROL, 1968, 12 (01): : 15 - &
  • [42] Asymptotic expansions for multivariate polynomial approximation
    Walz, G
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 122 (1-2) : 317 - 328
  • [43] Asymptotic noise gain of polynomial predictors
    Handel, P
    Tichavsky, P
    SIGNAL PROCESSING, 1997, 62 (02) : 247 - 250
  • [44] Bivariate polynomial interpolation with asymptotic conditions
    Carnicer, JM
    Gasca, M
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 202 : 1 - 18
  • [45] On asymptotic critical values of a complex polynomial
    Jelonek, Z
    Kurdyka, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 565 : 1 - 11
  • [46] Asymptotic cones and polynomial isoperimetric inequalities
    Bridson, MR
    TOPOLOGY, 1999, 38 (03) : 543 - 554
  • [47] POLYNOMIAL IDENTITIES OF ALGEBRAS OF SMALL DIMENSION
    Giambruno, Antonio
    Mishchenko, Sergey
    Zaicev, Mikhail
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 1934 - 1948
  • [48] ARNOLDS FORMULA FOR DIMENSION OF A POLYNOMIAL RING
    EAKIN, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) : 11 - 15
  • [49] ASYMPTOTIC BEHAVIOR OF BEST POLYNOMIAL APPROXIMATION
    BLUM, EK
    CURTIS, PC
    JOURNAL OF THE ACM, 1961, 8 (04) : 645 - &
  • [50] A POLYNOMIAL ASYMPTOTIC PRESENTATION OF THE SUBHARMONIC FUNCTION
    AGRANOVICH, PZ
    LOGVINENKO, VN
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (11): : 3 - 5