On-device context-aware misuse detection framework for heterogeneous IoT edge

被引:3
|
作者
Nitish, A. [1 ]
Hanumanthappa, J. [1 ]
Prakash, Shiva S. P. [2 ]
Krinkin, Kirill [3 ]
机构
[1] Univ Mysore, Dept Studies Comp Sci, Mysuru 570006, Karnataka, India
[2] JSS Sci & Technol Univ, Dept Informat Sci & Engn, JSS Tech Inst Campus, Mysuru 570006, Karnataka, India
[3] St Petersburg Electrotech Univ LETI, Dept Software Engn & Comp Applicat, Ulitsa Prof Popova 5, St Petersburg 197022, Russia
关键词
Botnet-based attacks; Context-awareness; Expert knowledge correlation; Heterogeneous IoT edge; On-device misuse intrusion detection; Root cause analysis; Threat intensity compounding; Threat localization; INTRUSION DETECTION; INTERNET; THINGS; ATTACKS; SYSTEM;
D O I
10.1007/s10489-022-04039-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional AI techniques for offline misuse network intrusion detection have performed well, assuming that the traffic from the datasets is sufficiently large for generalization, balanced, independently and identically distributed-exhibiting homogeneous behavior with little to no context change. However, the rapidly expanding IoT network is an ensemble of proliferating internet-connected devices catering to the growing need for handling highly distributed, heterogeneous, and time-critical workloads that conform to none of the above assumptions. Moreover, the evolving Botnet-based attack vectors exploit the non-standardized and poorly scrutinized architectural vulnerabilities of such devices-leading to compounding threat intensity, rapidly rendering the network defenseless. Furthermore, the memory, processor, and energy resource constraints of the IoT devices necessitate lightweight device-specific intrusion detection policies for effective and updated rule learning in real-time through the edge infrastructures. However, the existing methods proposed to solve such issues are either centralized, data and resource-intensive, context-unaware, or inefficient for online rule learning with smaller and imbalanced data samples. Thus, this paper addresses such issues through a context-aware expert system-based feature subset framework with minimal processing overhead and a decentralized on-device misuse detection scheme for IoT-called HetIoT-NIDS, capable of efficiently inferring over smaller data samples, tolerant to class imbalance, and deployable on the low-memory and low-power edge of IoT devices. Furthermore, HetIoT-NIDS facilitates threat localization within the deployed device, preventing threat progression and intensity compounding. The experiments and analyses of the propounded algorithms and the resulting training times and model sizes prove that the proposed approach is efficient and adaptable to online and offline misuse intrusion detection, especially on smaller data sample sizes.
引用
收藏
页码:14792 / 14818
页数:27
相关论文
共 50 条
  • [31] Context-Aware Caching in Wireless IoT Networks
    Zameel, Akhtari
    Najmuldeen, Mustafa
    Gormus, Sedat
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 712 - 717
  • [32] Context-Aware Saliency Detection
    Goferman, Stas
    Zelnik-Manor, Lihi
    Tal, Ayellet
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2376 - 2383
  • [33] Context-Aware Drone Detection
    Oligeri, Gabriele
    Sciancalepore, Savio
    CPSS'22: PROCEEDINGS OF THE 8TH ACM CYBER-PHYSICAL SYSTEM SECURITY WORKSHOP, 2022, : 63 - 71
  • [34] Context-Aware Saliency Detection
    Goferman, Stas
    Zelnik-Manor, Lihi
    Tal, Ayellet
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (10) : 1915 - 1926
  • [35] Context-Aware Drift Detection
    Cobb, Oliver
    Van Looveren, Arnaud
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [36] A Machine Learning based Context-aware Prediction Framework for Edge Computing Environments
    Aljulayfi, Abdullah Fawaz
    Djemame, Karim
    CLOSER: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, 2021, : 143 - 150
  • [37] Context-Aware IoT Device Functionality Extraction from Specifications for Ensuring Consumer Security
    Paudel, Upakar
    Dolan, Andy
    Majumdar, Suryadipta
    Ray, Indrakshi
    2021 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2021, : 155 - 163
  • [38] A Framework for Mobile, Context-Aware Applications
    De, Suparna
    Moessner, Klaus
    2009 INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), 2009, : 232 - 237
  • [39] A framework for context-aware handover decisions
    Prehofer, C
    Nafisi, N
    Wei, Q
    PIMRC 2003: 14TH IEEE 2003 INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS PROCEEDINGS, VOLS 1-3 2003, 2003, : 2794 - 2798
  • [40] Context-Aware Radar Modeling Framework
    Santos, Joao F.
    Paisana, Francisco
    Kaminski, Nicholas J.
    Marquez-Barja, Johann M.
    DaSilva, Luiz A.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (DYSPAN), 2015, : 113 - 122