A high-dimensional multinomial logit model

被引:0
|
作者
Nibbering, Didier [1 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic, Australia
关键词
Dirichlet process prior; high-dimensional models; large choice sets; multinomial logit model; BAYESIAN-INFERENCE; SELECTION; SHRINKAGE; TESTS;
D O I
10.1002/jae.3034
中图分类号
F [经济];
学科分类号
02 ;
摘要
The number of parameters in a standard multinomial logit model increases linearly with the number of choice alternatives and number of explanatory variables. Because many modern applications involve large choice sets with categorical explanatory variables, which enter the model as large sets of binary dummies, the number of parameters in a multinomial logit model is often large. This paper proposes a new method for data-driven two-way parameter clustering over outcome categories and explanatory dummy categories in a multinomial logit model. A Bayesian Dirichlet process mixture model encourages parameters to cluster over the categories, which reduces the number of unique model parameters and provides interpretable clusters of categories. In an empirical application, we estimate the holiday preferences of 11 household types over 49 holiday destinations and identify a small number of household segments with different preferences across clusters of holiday destinations.
引用
收藏
页码:481 / 497
页数:17
相关论文
共 50 条
  • [21] A multinomial logit model of floral choice
    Oppenheim, PP
    Fry, TRL
    PROCEEDINGS OF THE XXV INTERNATIONAL HORTICULTURAL CONGRESS, PT 14, 2000, (524): : 131 - 139
  • [22] Testing for IIA in the multinomial Logit model
    Cheng, Simon
    Long, J. Scott
    SOCIOLOGICAL METHODS & RESEARCH, 2007, 35 (04) : 583 - 600
  • [23] Approximate inference for the multinomial logit model
    Rekkas, M.
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (02) : 237 - 242
  • [24] A MULTINOMIAL LOGIT MODEL OF LABOR TURNOVER
    MELLOW, W
    JOURNAL OF ECONOMICS AND BUSINESS, 1980, 32 (03) : 227 - 234
  • [25] STANDARD ERRORS IN THE MULTINOMIAL LOGIT MODEL
    FOMBY, TB
    PEARCE, JE
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1986, 15 (08) : 2555 - 2568
  • [26] MULTINOMIAL, MULTIATTRIBUTE LOGIT CHOICE MODEL
    GENSCH, DH
    RECKER, WW
    JOURNAL OF MARKETING RESEARCH, 1979, 16 (01) : 124 - 132
  • [27] SPECIFICATION TESTS FOR THE MULTINOMIAL LOGIT MODEL
    HAUSMAN, J
    MCFADDEN, D
    ECONOMETRICA, 1984, 52 (05) : 1219 - 1240
  • [28] Penalized multinomial mixture logit model
    Bashir, Shaheena
    Carter, Edward M.
    COMPUTATIONAL STATISTICS, 2010, 25 (01) : 121 - 141
  • [29] GENERAL DEEP MULTINOMIAL LOGIT MODEL
    Su, Peng
    Liu, Yuan
    Zhao, Lingyun
    COMPUTING AND INFORMATICS, 2022, 41 (05) : 1240 - 1259
  • [30] Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification
    Yang Aijun
    Jiang Xuejun
    Liu Pengfei
    Lin Jinguan
    STATISTICS & PROBABILITY LETTERS, 2016, 119 : 241 - 247