Addressing image misalignments in multi-parametric prostate MRI for enhanced computer-aided diagnosis of prostate cancer

被引:2
|
作者
Kovacs, Balint [1 ,2 ,3 ]
Netzer, Nils [2 ,3 ]
Baumgartner, Michael [1 ,4 ,5 ]
Schrader, Adrian [2 ,3 ]
Isensee, Fabian [1 ,4 ]
Weisser, Cedric [2 ,3 ]
Wolf, Ivo [6 ]
Goertz, Magdalena [7 ,8 ]
Jaeger, Paul F. [4 ,9 ]
Schuetz, Victoria [8 ]
Floca, Ralf [1 ]
Gnirs, Regula [2 ]
Stenzinger, Albrecht [10 ]
Hohenfellner, Markus [8 ]
Schlemmer, Heinz-Peter [2 ,11 ]
Bonekamp, David [2 ,3 ,11 ]
Maier-Hein, Klaus H. [1 ,4 ,11 ,12 ]
机构
[1] German Canc Res Ctr DKFZ Heidelberg, Div Med Image Comp, Neuenheimer Feld 223, D-69120 Heidelberg, Germany
[2] German Canc Res Ctr DKFZ Heidelberg, Div Radiol, Heidelberg, Germany
[3] Heidelberg Univ, Med Fac Heidelberg, Heidelberg, Germany
[4] German Canc Res Ctr DKFZ Heidelberg, Helmholtz Imaging, Heidelberg, Germany
[5] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[6] Mannheim Univ Appl Sci, Mannheim, Germany
[7] German Canc Res Ctr, Jr Clin Cooperat Unit, Multiparametr Methods Early Detect Prostate Canc, Heidelberg, Germany
[8] Heidelberg Univ, Dept Urol, Med Ctr, Heidelberg, Germany
[9] German Canc Res Ctr DKFZ Heidelberg, Interact Machine Learning Grp, Heidelberg, Germany
[10] Heidelberg Univ, Inst Pathol, Med Ctr, Heidelberg, Germany
[11] German Canc Consortium DKTK, Core Ctr Heidelberg, DKFZ, Heidelberg, Germany
[12] Heidelberg Univ Hosp, Dept Radiat Oncol, Pattern Anal & Learning Grp, Heidelberg, Germany
关键词
DIFFUSION-WEIGHTED MRI; REGISTRATION; ACCURACY;
D O I
10.1038/s41598-023-46747-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prostate cancer (PCa) diagnosis on multi-parametric magnetic resonance images (MRI) requires radiologists with a high level of expertise. Misalignments between the MRI sequences can be caused by patient movement, elastic soft-tissue deformations, and imaging artifacts. They further increase the complexity of the task prompting radiologists to interpret the images. Recently, computer-aided diagnosis (CAD) tools have demonstrated potential for PCa diagnosis typically relying on complex co-registration of the input modalities. However, there is no consensus among research groups on whether CAD systems profit from using registration. Furthermore, alternative strategies to handle multi-modal misalignments have not been explored so far. Our study introduces and compares different strategies to cope with image misalignments and evaluates them regarding to their direct effect on diagnostic accuracy of PCa. In addition to established registration algorithms, we propose 'misalignment augmentation' as a concept to increase CAD robustness. As the results demonstrate, misalignment augmentations can not only compensate for a complete lack of registration, but if used in conjunction with registration, also improve the overall performance on an independent test set.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] The added value of AI-based computer-aided diagnosis in classification of cancer at prostate MRI
    Guiqin Liu
    Shihang Pan
    Rui Zhao
    Huang Zhou
    Jie Chen
    Xiang Zhou
    Jianrong Xu
    Yan Zhou
    Wei Xue
    Guangyu Wu
    European Radiology, 2023, 33 : 5118 - 5130
  • [42] Implementation of Multi-parametric Prostate MRI in Clinical Practice
    Andrea S. Kierans
    Samir S. Taneja
    Andrew B. Rosenkrantz
    Current Urology Reports, 2015, 16
  • [43] A survey of denoising techniques for multi-parametric prostate MRI
    Garg, Gaurav
    Juneja, Mamta
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) : 12689 - 12722
  • [44] Implementation of Multi-parametric Prostate MRI in Clinical Practice
    Kierans, Andrea S.
    Taneja, Samir S.
    Rosenkrantz, Andrew B.
    CURRENT UROLOGY REPORTS, 2015, 16 (08)
  • [45] The CADMUS trial - Multi-parametric ultrasound targeted biopsies compared to multi-parametric MRI targeted biopsies in the diagnosis of clinically significant prostate cancer
    Grey, Alistair
    Scott, Rebecca
    Charman, Susan
    van der Meulen, Jan
    Frinking, Peter
    Acher, Peter
    Liyanage, Sidath
    Madaan, Sanjeev
    Constantinescu, Gabriel
    Shah, Bina
    Graves, Chris Brew
    Freeman, Alex
    Jameson, Charles
    Ramachandran, Navin
    Emberton, Mark
    Arya, Manit
    Ahmed, Hashim U.
    CONTEMPORARY CLINICAL TRIALS, 2018, 66 : 86 - 92
  • [46] A survey of denoising techniques for multi-parametric prostate MRI
    Gaurav Garg
    Mamta Juneja
    Multimedia Tools and Applications, 2019, 78 : 12689 - 12722
  • [47] Can multi-parametric prostate MRI eliminate unnecessary biopsies and the diagnosis of insignificant prostate cancer? Data analysis of over 650 prostate mpMRI
    Raz, O.
    Kitzing, Y.
    Arianayagam, M.
    Lau, H.
    Varol, C.
    BJU INTERNATIONAL, 2015, 115 : 63 - 64
  • [48] Feasibility of integrating computer-aided diagnosis with structured reports of prostate multiparametric MRI
    Zhu, Lina
    Gao, Ge
    Liu, Yi
    Han, Chao
    Liu, Jing
    Zhang, Xiaodong
    Wang, Xiaoying
    CLINICAL IMAGING, 2020, 60 (01) : 123 - 130
  • [49] Modality-Specific Information Disentanglement From Multi-Parametric MRI for Breast Tumor Segmentation and Computer-Aided Diagnosis
    Chen, Qianqian
    Zhang, Jiadong
    Meng, Runqi
    Zhou, Lei
    Li, Zhenhui
    Feng, Qianjin
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (05) : 1958 - 1971
  • [50] The Role of Multi-Parametric MRI and Fusion Biopsy for the Diagnosis of Prostate Cancer - A Systematic Review of Current Literature
    Sarkar, Debashis
    CELL & MOLECULAR BIOLOGY OF PROSTATE CANCER: UPDATES, INSIGHTS AND NEW FRONTIERS, 2018, 1095 : 111 - 123