Effect of the leak port area and tube length on suppression of spontaneous ignition of high-pressure hydrogen

被引:11
|
作者
Pan, Xuhai [1 ,2 ]
Lu, Langqing [1 ]
Zhang, Tao [1 ,4 ]
Jiang, Yiming [1 ,3 ]
Li, Yunyu [1 ,3 ]
Wang, Zhilei [1 ]
Hua, Min [1 ]
Jiang, Juncheng [1 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Nanjing 210009, Peoples R China
[2] Nanjing Vocat Univ Ind Technol, Nanjing 211106, Peoples R China
[3] Univ Surrey, Fac Engn & Phys Sci, Dept Chem & Proc Engn, Guildford GU2 7XH, England
[4] HongyunHonghe Tobacco Grp Co Ltd, Qujing Tobacco Factory, Qujing 655001, Peoples R China
基金
中国国家自然科学基金;
关键词
High-pressure hydrogen; Leakage orifices; Shock waves; Spontaneous combustion; Flow characteristic; SELF-IGNITION; FLAME PROPAGATION; DIAPHRAGM SHAPE; SUDDEN RELEASE; METHANE JETS; SIMULATION; MECHANISM; ADDITIONS; DYNAMICS;
D O I
10.1016/j.est.2023.109396
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Suppression of high-pressure hydrogen spontaneous combustion is essential for the sustainable development of hydrogen energy. Previous studies have shown that suppressing hydrogen spontaneous combustion by reducing the area of the leak port is a feasible method. However, the effect of some factors, such as tube length, on this suppression method has not received attention. Therefore, the effect of leakage port areas of 10 mm, 8 mm, 6.6 mm, and 4.5 mm on the suppression of hydrogen spontaneous combustion was investigated experimentally and simulated for different pipe lengths. The results show that reducing the leak port area increases the hydrogen-air mixing path, which raises the combustible concentration. However, by reducing the leak port area, the intensity of shock waves and the maximum temperature in the tube decreased significantly, and the possibility of hydrogen spontaneous combustion decreased. This indicates that reducing the leak port area can inhibit hydrogen spontaneous combustion. In addition, within a certain leak area, increasing the tube length weakens the performance of this inhibition method. However, the effect of tube length on this method disappears as the leak area decreases. Finally, the leakage port area is reduced, changing the flow field at the nozzle, so that the spontaneous combustion flame in the near field of the nozzle undergoes extinguishment and re-ignition. The results show that reducing the area of the leakage port can effectively inhibit hydrogen self-ignition and is not affected by the length of the tube, providing a way to inhibit hydrogen self-ignition.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Effect of opening area on the suppression of self-ignition of high-pressure hydrogen gas leaking in the air by an extension tube
    Cha, Seung-Won
    Roh, Tae-Seong
    Lee, Hyoung Jin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (07) : 5904 - 5915
  • [2] Numerical simulation of the effect of multiple obstacles inside the tube on the spontaneous ignition of high-pressure hydrogen release
    Li, Xigui
    Teng, Lin
    Li, Weidong
    Huang, Xin
    Li, Jiaqing
    Luo, Yu
    Jiang, Lilong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (77) : 33135 - 33152
  • [3] Numerical study of the effect of obstacles on the spontaneous ignition of high-pressure hydrogen
    Morii, Youhi
    Terashima, Hiroshi
    Koshi, Mitsuo
    Shimizu, Taro
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2015, 34 : 92 - 99
  • [4] Numerical study on the effects of the obstacle shapes on the spontaneous ignition of high-pressure hydrogen in a tube
    Liu, Zhaozhen
    Li, Zelin
    Luan, Xiaoyang
    Xu, Wei
    Zhao, Shuaiyu
    Zhang, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 56 : 1067 - 1078
  • [5] Critical criterion for spontaneous ignition of high-pressure hydrogen released into the atmosphere through a tube
    Zhang, Songlin
    Zeng, Qian
    Tang, Jing
    Jiang, Guangbo
    Jiang, Yiming
    Duan, Qiangling
    Sun, Jinhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 92 : 342 - 348
  • [6] Effects of obstacles inside the tube on the shock wave propagation and spontaneous ignition of high-pressure hydrogen
    Li, Ping
    Duan, Qiangling
    Gong, Liang
    Jin, Kaiqiang
    Chen, Jiayan
    Sun, Jinhua
    FUEL, 2019, 236 : 1586 - 1594
  • [7] Numerical study on the mechanism of spontaneous ignition of high-pressure hydrogen in the L-shaped tube
    Gong, Liang
    Jin, Kaiyan
    Yang, Shengnan
    Yang, Zeyu
    Li, Zhisheng
    Gao, Yunji
    Zhang, Yuchun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 32730 - 32742
  • [8] Numerical study on the mechanism of spontaneous ignition of high-pressure hydrogen during its sudden release into a tube
    Gong, Liang
    Li, Zhisheng
    Jin, Kaiyan
    Gao, Yunji
    Duan, Qiangling
    Zhang, Yuchun
    Sun, Jinhua
    SAFETY SCIENCE, 2020, 129
  • [9] Numerical simulation on the spontaneous ignition of high-pressure hydrogen release through a tube at different burst pressures
    Zhu, Mengyuan
    Jin, Kaiqiang
    Duan, Qiangling
    Zeng, Qian
    Sun, Jinhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (18) : 10431 - 10440
  • [10] Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air
    Duan, Qiangling
    Xiao, Huahua
    Gao, Wei
    Gong, Liang
    Wang, Qingsong
    Sun, Jinhua
    FUEL, 2016, 181 : 811 - 819