Numerical study on the mechanism of spontaneous ignition of high-pressure hydrogen in the L-shaped tube

被引:38
|
作者
Gong, Liang [1 ]
Jin, Kaiyan [1 ]
Yang, Shengnan [1 ]
Yang, Zeyu [1 ]
Li, Zhisheng [1 ]
Gao, Yunji [1 ]
Zhang, Yuchun [1 ]
机构
[1] Southwest Jiaotong Univ, Dept Fire Protect Engn, Chengdu 611756, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
High-pressure hydrogen; Release; Spontaneous ignition; Mechanism; L-shaped tube; CFD; SELF-IGNITION; FLAME PROPAGATION; RELEASE; DYNAMICS; VISUALIZATION; EXPLOSION; GEOMETRY; MODEL;
D O I
10.1016/j.ijhydene.2020.08.267
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There have been reports of ignition of high-pressure hydrogen during its sudden release for unexplained reasons and ignition mechanism still need to be further investigated. In this paper, mechanism of spontaneous ignition of high-pressure hydrogen during its sudden release into the L-shaped tube is investigated. LES, EDC model, 10-step like opening process of burst disk and 18-step detailed hydrogen combustion mechanism are employed. Three cases with burst pressures of 2.16, 6.21, and 9.10 MPa are simulated. It is found that shock wave is strongly reflected after it hits the tube corner wall, forming a reflected-shock-affected region and an energy conversion region with higher temperature, greater pressure and lower velocity. Afterwards, the reflected shock wave moving forward is reflected several times by the tube wall until it disappears and oblique shock is generated. After the hydrogen/air mixture enters the corner, it extends downstream along inner wall and separated from the main hydrogen/air mixture. The reflected shock wave moving backward interacts with the expansion waves and increases the temperature and pressure again, but spontaneous ignition cannot be initiated. Three mechanisms of spontaneous ignition of high-pressure hydrogen in the L-shaped tube are proposed eventually. The results reproduce the experimental spontaneous ignition conditions and positions, indicating that the numerical models can be applied as a tool for hydrogen safety engineering. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:32730 / 32742
页数:13
相关论文
共 50 条
  • [1] Numerical study on the mechanism of spontaneous ignition of high-pressure hydrogen during its sudden release into a tube
    Gong, Liang
    Li, Zhisheng
    Jin, Kaiyan
    Gao, Yunji
    Duan, Qiangling
    Zhang, Yuchun
    Sun, Jinhua
    SAFETY SCIENCE, 2020, 129
  • [2] Numerical study on the effects of the obstacle shapes on the spontaneous ignition of high-pressure hydrogen in a tube
    Liu, Zhaozhen
    Li, Zelin
    Luan, Xiaoyang
    Xu, Wei
    Zhao, Shuaiyu
    Zhang, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 56 : 1067 - 1078
  • [3] Numerical Study on the Inhibition Mechanism of Methane Addition on the High-pressure Hydrogen Spontaneous Ignition
    Zhong, Chen
    Gou, Xiao-Long
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2022, 43 (02): : 524 - 534
  • [4] Mechanism of spontaneous ignition of high-pressure hydrogen during its release through a tube with local contraction: A numerical study
    Jin, Kaiyan
    Yang, Shengnan
    Gong, Liang
    Mo, Tianyu
    Gao, Yunji
    Zhang, Yuchun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 6421 - 6436
  • [5] Numerical study of the effect of obstacles on the spontaneous ignition of high-pressure hydrogen
    Morii, Youhi
    Terashima, Hiroshi
    Koshi, Mitsuo
    Shimizu, Taro
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2015, 34 : 92 - 99
  • [6] Numerical study on the spontaneous-ignition features of high-pressure hydrogen released through a tube with burst conditions
    Lee, Hyoung Jin
    Park, Ji Hyun
    Kim, Sung Don
    Kim, Seihwan
    Jeung, In-Seuck
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 : 2173 - 2180
  • [7] Numerical simulation on the spontaneous ignition of high-pressure hydrogen release through a tube at different burst pressures
    Zhu, Mengyuan
    Jin, Kaiqiang
    Duan, Qiangling
    Zeng, Qian
    Sun, Jinhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (18) : 10431 - 10440
  • [8] Numerical simulation of the effect of multiple obstacles inside the tube on the spontaneous ignition of high-pressure hydrogen release
    Li, Xigui
    Teng, Lin
    Li, Weidong
    Huang, Xin
    Li, Jiaqing
    Luo, Yu
    Jiang, Lilong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (77) : 33135 - 33152
  • [9] Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air
    Duan, Qiangling
    Xiao, Huahua
    Gao, Wei
    Gong, Liang
    Wang, Qingsong
    Sun, Jinhua
    FUEL, 2016, 181 : 811 - 819
  • [10] Critical criterion for spontaneous ignition of high-pressure hydrogen released into the atmosphere through a tube
    Zhang, Songlin
    Zeng, Qian
    Tang, Jing
    Jiang, Guangbo
    Jiang, Yiming
    Duan, Qiangling
    Sun, Jinhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 92 : 342 - 348