Efficient circuit simulation of a memristive crossbar array with synaptic weight variability

被引:2
|
作者
Dersch, Nadine [1 ]
Quesada, Emilio Perez-Bosch [2 ]
Perez, Eduardo [2 ,3 ]
Wenger, Christian [2 ,3 ]
Roemer, Christian [1 ,4 ]
Schwarz, Mike [1 ]
Kloes, Alexander [1 ]
机构
[1] THM Univ Appl Sci, NanoP, Giessen, Germany
[2] IHP Leibniz Inst Innovat Mikroelekt, Frankfurt, Oder, Germany
[3] BTU Cottbus Senftenberg, Cottbus, Germany
[4] Univ Rovira i Virgili, DEEEA, Tarragona, Spain
关键词
Artificial neural network; Memristive array; Variability; Monte Carlo; Noise-based; Simulation;
D O I
10.1016/j.sse.2023.108760
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a method for highly-efficient circuit simulation of a hardware-based artificial neural network realized in a memristive crossbar array. The statistical variability of the devices is considered by a noisebased simulation technique. For the simulation of a crossbar array with 8 synaptic weights in Cadence Virtuoso the new approach shows a more than 200x speed improvement compared to a Monte Carlo approach, yielding the same results. In addition, first results of an ANN with more than 15,000 memristive devices classifying test data of the MNIST dataset are shown, for which the speed improvement is expected to be several orders of magnitude. Furthermore, the influence on the classification of parasitic resistances of the connection lines in the crossbar is shown.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] XbarSim: An Educational Simulation Tool for Memristive Crossbar-Based Circuits
    Vourkas, Ioannis
    Stathis, Dimitrios
    Sirakoulis, Georgios Ch
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1798 - 1801
  • [42] Impact of Integrated Circuit Packaging on Synaptic Dynamics of Memristive Devices
    Irmanova, Aidana
    Ellis, Grant A.
    James, Alex Pappachen
    2018 IEEE ELECTRICAL DESIGN OF ADVANCED PACKAGING AND SYSTEMS SYMPOSIUM (EDAPS 2018), 2018,
  • [43] Neuro-memristive Circuit for Bio-synaptic Plasticity
    Mannan, Zubaer Ibna
    Kim, Hyongsuk
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [44] Yield Evaluation of Faulty Memristive Crossbar Array-based Neural Networks with Repairability
    Bala, Anu
    Khandelwal, Saurabh
    Jabir, Abusaleh
    Ottavi, Marco
    2022 IEEE 28TH INTERNATIONAL SYMPOSIUM ON ON-LINE TESTING AND ROBUST SYSTEM DESIGN (IOLTS 2022), 2022,
  • [45] Demonstration of a novel majority logic in a memristive crossbar array for in-memory parallel computing
    Choi, Moon Gu
    In, Jae Hyun
    Song, Hanchan
    Kim, Gwangmin
    Rhee, Hakseung
    Park, Woojoon
    Kim, Kyung Min
    MATERIALS HORIZONS, 2025, 12 (01) : 131 - 140
  • [46] Synaptic Variability in a Cortical Neuromorphic Circuit
    Mahvash, Mohammad
    Parker, Alice C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (03) : 397 - 409
  • [47] Memristive Logic in Crossbar Memory Arrays: Variability-Aware Design for Higher Reliability
    Escudero, Manuel
    Vourkas, Ioannis
    Rubio, Antonio
    Moll, Francesc
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 635 - 646
  • [48] An efficient method for evaluating RRAM crossbar array performance
    Song, Lin
    Zhang, Jinyu
    Chen, An
    Wu, Huaqiang
    Qian, He
    Yu, Zhiping
    SOLID-STATE ELECTRONICS, 2016, 120 : 32 - 40
  • [49] Memristor Crossbar Array Simulation for Deep Learning Applications
    Machado, Elvis Diaz
    Vicario, Jose Lopez
    Miranda, Enrique
    Morell, Antoni
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2024, 23 : 512 - 515
  • [50] Accurate weight mapping in a multi-memristive synaptic unit
    Martemucci, Michele
    Kersting, Benedikt
    Khaddam-Aljameh, Riduan
    Boybat, Irem
    Nandakumar, S. R.
    Egger, Urs
    Brightsky, Matthew
    Bruce, Robert L.
    Le Gallo, Manuel
    Abu Sebastian
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,