Efficient circuit simulation of a memristive crossbar array with synaptic weight variability

被引:2
|
作者
Dersch, Nadine [1 ]
Quesada, Emilio Perez-Bosch [2 ]
Perez, Eduardo [2 ,3 ]
Wenger, Christian [2 ,3 ]
Roemer, Christian [1 ,4 ]
Schwarz, Mike [1 ]
Kloes, Alexander [1 ]
机构
[1] THM Univ Appl Sci, NanoP, Giessen, Germany
[2] IHP Leibniz Inst Innovat Mikroelekt, Frankfurt, Oder, Germany
[3] BTU Cottbus Senftenberg, Cottbus, Germany
[4] Univ Rovira i Virgili, DEEEA, Tarragona, Spain
关键词
Artificial neural network; Memristive array; Variability; Monte Carlo; Noise-based; Simulation;
D O I
10.1016/j.sse.2023.108760
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a method for highly-efficient circuit simulation of a hardware-based artificial neural network realized in a memristive crossbar array. The statistical variability of the devices is considered by a noisebased simulation technique. For the simulation of a crossbar array with 8 synaptic weights in Cadence Virtuoso the new approach shows a more than 200x speed improvement compared to a Monte Carlo approach, yielding the same results. In addition, first results of an ANN with more than 15,000 memristive devices classifying test data of the MNIST dataset are shown, for which the speed improvement is expected to be several orders of magnitude. Furthermore, the influence on the classification of parasitic resistances of the connection lines in the crossbar is shown.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Fast Circuit Simulation of Memristive Crossbar Arrays with Bimodal Stochastic Synaptic Weights
    Dersch, Nadine
    Roemer, Christian
    Perez, Eduardo
    Wenger, Christian
    Schwarz, Mike
    Iniguez, Benjamin
    Kloes, Alexander
    2024 IEEE LATIN AMERICAN ELECTRON DEVICES CONFERENCE, LAEDC, 2024,
  • [2] Efficient grouping approach for fault tolerant weight mapping in memristive crossbar array
    Yadav, Dev Narayan
    Thangkhiew, Phrangboklang Lyngton
    Chakraborty, Sandip
    Sengupta, Indranil
    Memories - Materials, Devices, Circuits and Systems, 2023, 4
  • [3] An efficient read approach for memristive crossbar array
    Samanta, Pravanjan
    Yadav, Dev Narayan
    Das, Partha Pratim
    Sengupta, Indranil
    Memories - Materials, Devices, Circuits and Systems, 2023, 4
  • [4] Efficient Implementation of Adder Circuits in Memristive Crossbar Array
    Thangkhiew, P. L.
    Gharpinde, Rahul
    Yadav, Dev Narayan
    Datta, Kamalika
    Sengupta, Indranil
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 207 - 212
  • [5] An efficient memristive alternating crossbar array and the design of full adder
    Meiqi Jiang
    Jingru Sun
    Chunhua Wang
    Ziyao Liao
    Yichuang Sun
    Qinghui Hong
    Jiliang Zhang
    Nonlinear Dynamics, 2023, 111 : 20331 - 20345
  • [6] An efficient memristive alternating crossbar array and the design of full adder
    Jiang, Meiqi
    Sun, Jingru
    Wang, Chunhua
    Liao, Ziyao
    Sun, Yichuang
    Hong, Qinghui
    Zhang, Jiliang
    NONLINEAR DYNAMICS, 2023, 111 (21) : 20331 - 20345
  • [7] Universal filter array with memristive crossbar
    Remanan, Akhila
    Gopi, Anitha
    Aswani, A. R.
    James, Alex
    2024 IEEE 24TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, NANO 2024, 2024, : 364 - 369
  • [8] Y2O3-based memristive crossbar array for synaptic learning
    Gautam, Mohit Kumar
    Kumar, Sanjay
    Mukherjee, Shaibal
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (20)
  • [9] Unstructured Weight Pruning in Variability-Aware Memristive Crossbar Neural Networks
    Aswani, A. R.
    Chithra, R.
    James, A. P.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3458 - 3462
  • [10] Memristive crossbar array with applications in image processing
    HU XiaoFang
    ScienceChina(InformationSciences), 2012, 55 (02) : 461 - 472