The Adaptive Spectral Koopman Method for Dynamical Systems*

被引:4
|
作者
Li, Bian [1 ]
Ma, Yian [2 ,3 ]
Kutz, J. Nathan [4 ]
Yang, Xiu [1 ]
机构
[1] Lehigh Univ, Dept Ind & Syst Engn, Bethlehem, PA 18015 USA
[2] Univ Calif San Diego, Haliciogulu Data Sci Inst, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[4] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
来源
基金
美国国家科学基金会;
关键词
Key words; dynamical system; Koopman operator; spectral -collocation method; SPARSE GRID METHODS; MODE DECOMPOSITION;
D O I
10.1137/22M1487941
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dynamical systems have a wide range of applications in mechanics, electrical engineering, chemistry, and so on. In this work, we propose the adaptive spectral Koopman (ASK) method to solve nonlinear autonomous dynamical systems. This novel numerical method leverages the spectralcollocation (i.e., pseudospectral) method and properties of the Koopman operator to obtain the solution of a dynamical system. Specifically, this solution is represented as a linear combination of the multiplication of the Koopman operator's eigenfunctions and eigenvalues, and these eigenpairs are approximated by the spectral method. Unlike conventional time evolution algorithms such as Euler's scheme and the Runge--Kutta scheme, ASK is mesh free and hence is more flexible when evaluating the solution. Numerical experiments demonstrate high accuracy of ASK for solving one-, two-, and three-dimensional dynamical systems.
引用
收藏
页码:1523 / 1551
页数:29
相关论文
共 50 条
  • [31] Spectral Theory of Dynamical Systems
    Queffelec, Martine
    SUBSTITUTION DYNAMICAL SYSTEMS: SPECTRAL ANALYSIS, SECOND EDITION, 2010, 1294 : 49 - 86
  • [32] Koopman Operator Methods for Global Phase Space Exploration of Equivariant Dynamical Systems
    Sinha, Subhrajit
    Nandanoori, Sai Pushpak
    Yeung, Enoch
    IFAC PAPERSONLINE, 2020, 53 (02): : 1150 - 1155
  • [33] Perspectives on adaptive dynamical systems
    Sawicki, Jakub
    Berner, Rico
    Loos, Sarah A. M.
    Anvari, Mehrnaz
    Bader, Rolf
    Barfuss, Wolfram
    Botta, Nicola
    Brede, Nuria
    Franovic, Igor
    Gauthier, Daniel J.
    Goldt, Sebastian
    Hajizadeh, Aida
    Hoevel, Philipp
    Karin, Omer
    Lorenz-Spreen, Philipp
    Miehl, Christoph
    Moelter, Jan
    Olmi, Simona
    Schoell, Eckehard
    Seif, Alireza
    Tass, Peter A.
    Volpe, Giovanni
    Yanchuk, Serhiy
    Kurths, Juergen
    CHAOS, 2023, 33 (07)
  • [34] Dynamical Theory for Adaptive Systems
    Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen
    2100-DK, Denmark
    arXiv,
  • [35] Dynamical theory for adaptive systems
    Pham, Tuan Minh
    Kaneko, Kunihiko
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (11):
  • [36] Koopman Resolvent: A Laplace-Domain Analysis of Nonlinear Autonomous Dynamical Systems
    Susuki, Yoshihiko
    Mauroy, Alexandre
    Mezic, Igor
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (04): : 2013 - 2036
  • [37] Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
    Brunton, Steven L.
    Brunton, Bingni W.
    Proctor, Joshua L.
    Kutz, J. Nathan
    PLOS ONE, 2016, 11 (02):
  • [38] Koopman Linear Quadratic Regulator Using Complex Eigenfunctions for Nonlinear Dynamical Systems
    Gibson A.J.
    Calvisi M.L.
    Yee X.C.
    SIAM Journal on Applied Dynamical Systems, 2022, 21 (04): : 2463 - 2486
  • [39] Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems
    Yeung, Enoch
    Kundu, Soumya
    Hodas, Nathan
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4832 - 4839
  • [40] Calculation Method for Equilibrium Points in Dynamical Systems Based on Adaptive Sinchronization
    Prian Rodriguez, Manuel
    Lopez Sanchez, Manuel J.
    Francisco Moreno Verdulla, J.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2018, 15 (01): : 79 - 85