On Refinements of Numerical Radius Inequalities

被引:1
|
作者
Hyder, Javariya [1 ]
Akram, Muhammad Saeed [2 ]
机构
[1] Khwaja Fareed Univ Engn & Informat Technol, Dept Math, Rahim Yar Khan, Pakistan
[2] Ghazi Univ, Fac Sci, Dept Math, Dera Ghazi Khan 32200, Pakistan
关键词
Numerical radius; Inequalities; McCarty inequality; Mixed Schwarz inequality; ZEROS;
D O I
10.1007/s40995-023-01438-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, several numerical radius inequalities are developed for bounded linear operators defined on a Complex Hilbert space H which refine some existing numerical radius inequalities.
引用
收藏
页码:915 / 925
页数:11
相关论文
共 50 条
  • [11] FURTHER REFINEMENTS OF SOME NUMERICAL RADIUS INEQUALITIES FOR OPERATORS
    Soltani, Soumia
    Frakis, Abdelkader
    OPERATORS AND MATRICES, 2023, 17 (01): : 245 - 257
  • [12] Refinements of some numerical radius inequalities for Hilbert space operators
    Jena, Mamata Rani
    Das, Namita
    Sahoo, Satyajit
    FILOMAT, 2023, 37 (10) : 3043 - 3051
  • [13] Refinements of some numerical radius inequalities for Hilbert space operators
    Alomari, Mohammad W.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (07): : 1208 - 1223
  • [14] SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Alizadeh, Ebrahim
    Farokhinia, Ali
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 55 - 63
  • [15] SOME REFINEMENTS OF THE NUMERICAL RADIUS INEQUALITIES VIA YOUNG INEQUALITY
    Heydarbeygi, Z.
    Amyari, M.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (02): : 191 - 202
  • [16] Refinements of some numerical radius inequalities for Hilbert space operators
    Rashid, Mohammad H. M.
    TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (02): : 155 - 173
  • [17] REFINEMENTS OF THE GENERALIZED NUMERICAL RADIUS OF HEINZ-TYPE INEQUALITIES
    Yousef A.
    Alakhrass M.
    Journal of Mathematical Sciences, 2024, 280 (2) : 157 - 167
  • [18] Refinements of Numerical Radius Inequalities Via Specht's Ratio
    Khatib, Y.
    Hassani, M.
    Amyari, M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (07)
  • [19] Some Refinements Of Numerical Radius Inequalities Via Convex Functions
    Safshekan, Rahim
    Farokhinia, Ali
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 542 - 549
  • [20] Further refinements of generalized numerical radius inequalities for Hilbert space operators
    Hajmohamadi, Monire
    Lashkaripour, Rahmatollah
    Bakherad, Mojtaba
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 83 - 92