On Refinements of Numerical Radius Inequalities

被引:1
|
作者
Hyder, Javariya [1 ]
Akram, Muhammad Saeed [2 ]
机构
[1] Khwaja Fareed Univ Engn & Informat Technol, Dept Math, Rahim Yar Khan, Pakistan
[2] Ghazi Univ, Fac Sci, Dept Math, Dera Ghazi Khan 32200, Pakistan
关键词
Numerical radius; Inequalities; McCarty inequality; Mixed Schwarz inequality; ZEROS;
D O I
10.1007/s40995-023-01438-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, several numerical radius inequalities are developed for bounded linear operators defined on a Complex Hilbert space H which refine some existing numerical radius inequalities.
引用
收藏
页码:915 / 925
页数:11
相关论文
共 50 条
  • [1] On Refinements of Numerical Radius Inequalities
    Javariya Hyder
    Muhammad Saeed Akram
    Iranian Journal of Science, 2023, 47 : 915 - 925
  • [2] REFINEMENTS OF NORM AND NUMERICAL RADIUS INEQUALITIES
    Bhunia, Pintu
    Paul, Kallol
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 1953 - 1965
  • [3] On Further Refinements of Numerical Radius Inequalities
    Hazaymeh, Ayman
    Qazza, Ahmad
    Hatamleh, Raed
    Alomari, Mohammad W.
    Saadeh, Rania
    AXIOMS, 2023, 12 (09)
  • [4] SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES
    Heydarbeygi, Z.
    Amyari, M.
    Khanehgir, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 72 (10) : 1664 - 1674
  • [5] Some Refinements of Numerical Radius Inequalities
    Z. Heydarbeygi
    M. Amyari
    M. Khanehgir
    Ukrainian Mathematical Journal, 2021, 72 : 1664 - 1674
  • [6] Refinements of some numerical radius inequalities for operators
    Aici, Soumia
    Frakis, Abdelkader
    Kittaneh, Fuad
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3815 - 3828
  • [7] Refinements of A-numerical radius inequalities and their applications
    Bhunia, Pintu
    Nayak, Raj Kumar
    Paul, Kallol
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1498 - 1511
  • [8] Refinements of A-numerical radius inequalities and their applications
    Pintu Bhunia
    Raj Kumar Nayak
    Kallol Paul
    Advances in Operator Theory, 2020, 5 : 1498 - 1511
  • [9] Refinements of some numerical radius inequalities for operators
    Soumia Aici
    Abdelkader Frakis
    Fuad Kittaneh
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3815 - 3828
  • [10] Refinements of numerical radius inequalities using the Kantorovich ratio
    Nikzat, Elham
    Omidvar, Mohsen Erfanian
    CONCRETE OPERATORS, 2022, 9 (01): : 70 - 74