共 50 条
Boosting photocatalytic performance of CdxZn1-xS for H2 production by Mo2C MXene with large interlayer distance
被引:58
|作者:
Jin, Sen
[1
]
Wu, Jiabin
[2
]
Jiang, Jizhou
[3
]
Wang, Ruige
[1
]
Zhou, Bingxin
[1
]
Wang, Libo
[1
]
Hu, Qianku
[1
]
Zhou, Aiguo
[1
]
机构:
[1] Henan Polytech Univ, Sch Mat Sci & Engn, Jiaozuo 454003, Henan, Peoples R China
[2] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[3] Wuhan Inst Technol, Engn Res Ctr Phosphorus Resources Dev, Sch Environm Ecol & Biol Engn, Key Lab Green Chem Engn Proc Minist Educ, Wuhan 430205, Hubei, Peoples R China
基金:
中国国家自然科学基金;
关键词:
TRANSITION-METAL CARBIDES;
HYDROGEN-PRODUCTION;
WATER;
PHASE;
SEMICONDUCTORS;
DELAMINATION;
NANOFIBERS;
MORPHOLOGY;
SURFACES;
D O I:
10.1039/d3ta00435j
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Here we report a novel heterostructure with ultrahigh photocatalytic performance for H<INF>2</INF> production. The heterostructure consists of Cd<INF>x</INF>Zn<INF>1-<INF>x</INF></INF>S solid solution and two dimensional Mo<INF>2</INF>C MXene. The Mo<INF>2</INF>C MXene works as a co-catalyst, which was made from Mo<INF>2</INF>Ga<INF>2</INF>C by etching in cetyltrimethylammonium bromide (CTAB) solution at 160 degrees C for 24 h. Different from the MXene made by the general method of fluoric acid etching, the Mo<INF>2</INF>C MXene made by this method had ultra large interlayer space (lattice parameter c = 24.5 angstrom) due to the in situ intercalation of CTA+. Thereafter, the Mo<INF>2</INF>C MXene without a delamination process was used as the substrate to grow Cd<INF>0.8</INF>Zn<INF>0.2</INF>S (CZS) at room temperature, followed by heating in a hydrothermal process to achieve the phase conversion of CZS from sphalerite to wurtzite. The CZS/Mo<INF>2</INF>C photocatalyst (mass ratio of Mo<INF>2</INF>C : CZS = 0.2 : 1) achieves an ultrahigh photocatalytic H<INF>2</INF> production activity of 44.19 mmol g-1 h-1, surpassing pure CZS by a satisfying factor of approximate to 2289%. It is higher than that of other MXene-co-catalysts and other noble-metal-free CSZ-based photocatalysts reported to date.
引用
收藏
页码:5851 / 5863
页数:13
相关论文