Measuring mechanical properties with high-speed atomic force microscopy

被引:4
|
作者
Ganser, Christian [1 ]
Uchihashi, Takayuki [1 ,2 ]
机构
[1] Natl Inst Nat Sci, Exploratory Res Ctr Life & Living Syst ExCELLS, 5-1 Higashiyama, Okazaki, Aichi 4448787, Japan
[2] Nagoya Univ, Dept Phys, Chikusa Ku,Furo Cho, Nagoya, Japan
关键词
high-speed atomic force microscopy (HS-AFM); mechanical properties; BOND-ENERGIES; AMPHIPHYSIN; CONTACT; NANOINDENTATION; MICROTUBULES; CALIBRATION; PROTEIN; PIEZO1; SAS-6;
D O I
10.1093/jmicro/dfad051
中图分类号
TH742 [显微镜];
学科分类号
摘要
High-speed atomic force microscopy (HS-AFM) is now a widely used technique to study the dynamics of single biomolecules and complex structures. In the past, it has mainly been used to capture surface topography as structural analysis, leading to important discoveries not attainable by other methods. Similar to conventional AFM, the scope of HS-AFM was recently expanded to encompass quantities beyond topography, such as the measurement of mechanical properties. This review delves into various methodologies for assessing mechanical properties, ranging from semi-quantitative approaches to precise force measurements and their corresponding sample responses. We will focus on the application to single proteins such as bridging integrator-1, ion channels such as Piezo1, complex structures such as microtubules and supramolecular fibers. In all these examples, the unique combination of quantifiable force application and high spatiotemporal resolution allows to unravel mechanisms that cannot be investigated by conventional means.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 50 条
  • [21] Control techniques in high-speed atomic force microscopy
    Ando, Toshio
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 3194 - 3200
  • [22] Automated parallel high-speed atomic force microscopy
    Minne, SC
    Yaralioglu, G
    Manalis, SR
    Adams, JD
    Zesch, J
    Atalar, A
    Quate, CF
    APPLIED PHYSICS LETTERS, 1998, 72 (18) : 2340 - 2342
  • [23] High-speed atomic force microscopy coming of age
    Ando, Toshio
    NANOTECHNOLOGY, 2012, 23 (06)
  • [24] Applied physics - High-speed atomic force microscopy
    Hansma, Paul K.
    Schitter, Georg
    Fantner, Georg E.
    Prater, Craig
    SCIENCE, 2006, 314 (5799) : 601 - 602
  • [25] High-speed atomic force microscopy simultaneous to advanced optical microscopy
    Hermsdoerfer, A.
    Stamov, D. R.
    Franz, C. M.
    Madl, J.
    Roemer, W.
    Jaehnke, T.
    Haschke, H.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S78 - S78
  • [26] High-Speed Atomic Force Microscopy and Peak Force Tapping Control
    Hu, Shuiqing
    Mininni, Lars
    Hu, Yan
    Erina, Natalia
    Kindt, Johannes
    Su, Chanmin
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXVI, PTS 1 AND 2, 2012, 8324
  • [27] Structural Dynamics of Endocytosis by High-Speed Atomic Force Microscopy
    Tagiltsev, Grigory
    Eghiaian, Frederic
    Scheuring, Simon
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 92A - 92A
  • [28] High-speed atomic force microscopy with phase-detection
    Lee, Donghyeok
    Lee, Hyunsoo
    Lee, N. S.
    Kim, K. B.
    Seo, Yongho
    CURRENT APPLIED PHYSICS, 2012, 12 (03) : 989 - 994
  • [29] Filming Biomolecular Processes by High-Speed Atomic Force Microscopy
    Ando, Toshio
    Uchihashi, Takayuki
    Scheuring, Simon
    CHEMICAL REVIEWS, 2014, 114 (06) : 3120 - 3188
  • [30] High-speed Atomic Force Microscopy for Imaging and Generating Nanostructures
    Picco, Loren
    Engledew, David
    Vicary, James
    Antognozzi, Massimo
    Ulcinas, Arturas
    Dunton, Peter
    Miles, Mervyn
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 386 - 386