High-impedance Fault Detection Method Based on Feature Extraction and Synchronous Data Divergence Discrimination in Distribution Networks

被引:5
|
作者
Liu, Yang [1 ]
Zhao, Yanlei [1 ]
Wang, Lei [1 ]
Fang, Chen [2 ]
Xie, Bangpeng [3 ]
Cui, Laixi [1 ]
机构
[1] Shandong Univ Technol, Sch Elect & Elect Technol, Zibo, Peoples R China
[2] State Grid Shanghai Elect Power Res Inst, Shanghai, Peoples R China
[3] State Grid Shanghai Pudong Elect Power Supply Co, Shanghai, Peoples R China
关键词
High-impedance fault; micro-phase measurement unit; fault detection; distribution network; optimal placement; WAVELET PACKET TRANSFORM; DISTRIBUTION FEEDERS; PMU PLACEMENT; IDENTIFICATION; SYNCHROPHASORS; DIAGNOSIS;
D O I
10.35833/MPCE.2021.000411
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-impedance faults (HIFs) in distribution networks may result in fires or electric shocks. However, considerable difficulties exist in HIF detection due to low-resolution measurements and the considerably weaker time-frequency characteristics. This paper presents a novel HIF detection method using synchronized current information. The method consists of two stages. In the first stage, joint key characteristics of the system are extracted with the minimal system prior knowledge to identify the global optimal micro-phase measurement unit (mu PMU) placement. In the second stage, the HIF is detected through a multivariate Jensen-Shannon divergence similarity measurement using high-resolution time-synchronized data in mu PMUs in a high-noise environment. l(2,1) principal component analysis (PCA), i.e., PCA based on the l(2,1) norm, is applied to an extracted system state and fault features derived from different resolution data in both stages. An economic observability index and HIF criteria are employed to evaluate the performance of placement method and to identify HIFs. Simulation results show that the method can reliably detect HIFs with reasonable detection accuracy in noisy environments.
引用
收藏
页码:1235 / 1246
页数:12
相关论文
共 50 条
  • [21] A High-Impedance Fault Detection Method for Distribution Systems Based on Empirical Wavelet Transform and Differential Faulty Energy
    Gao, Jie
    Wang, Xiaohua
    Wang, Xiaowei
    Yang, Aijun
    Yuan, Huan
    Wei, Xiangxiang
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (02) : 900 - 912
  • [22] Directional, High-Impedance Fault Detection in Isolated Neutral Distribution Grids
    Gonzalez, Carlos
    Tant, Jeroen
    Germain, Jean Gardy
    De Rybel, Tom
    Driesen, Johan
    IEEE TRANSACTIONS ON POWER DELIVERY, 2018, 33 (05) : 2474 - 2483
  • [23] High-impedance Grounding Fault Detection Method for Distribution Network Considering Capacitor Switching Disturbance
    Han, Zhaoru
    Shi, Fang
    Zhang, Hengxu
    Jin, Zongshuai
    Yun, Zhihao
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (21): : 180 - 191
  • [24] Detection of High Impedance Fault in Distribution Networks
    Kavaskar, Sekar
    Mohanty, Nalin Kant
    AIN SHAMS ENGINEERING JOURNAL, 2019, 10 (01) : 5 - 13
  • [25] A data-driven impedance estimation and matching method for high impedance fault detection and location of distribution networks
    Zhang, Zhenyu
    Li, Yong
    Wang, Zhiyu
    Liu, Junle
    Chen, An
    Cao, Yijia
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 165
  • [26] LSTM-based low-impedance fault and high-impedance fault detection and classification
    Bhatnagar, Maanvi
    Yadav, Anamika
    Swetapadma, Aleena
    Abdelaziz, Almoataz Y.
    ELECTRICAL ENGINEERING, 2024, 106 (05) : 6589 - 6613
  • [27] Towards the Text Compression Based Feature Extraction in High Impedance Fault Detection
    Vantuch, Tomas
    Prilepok, Michal
    Fulnecek, Jan
    Hrbac, Roman
    Misak, Stanislav
    ENERGIES, 2019, 12 (11)
  • [28] Faulty Feeder Detection Under High-Impedance Fault for Active Distribution Networks in Resonant Grounding Mode
    Wang, Xiaowei
    Wang, Xue
    Liu, Weibo
    Gao, Jie
    Wei, Xiangxiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [29] High-Impedance Fault Detection in the Distribution Network Using the Time-Frequency-Based Algorithm
    Ghaderi, Amin
    Mohammadpour, Hossein Ali
    Ginn, Herbert L., II
    Shin, Yong-June
    IEEE TRANSACTIONS ON POWER DELIVERY, 2015, 30 (03) : 1260 - 1268
  • [30] An Intermittent High-impedance Fault Identification Method Based on Transient Power Direction Detection and Intermittency Detection
    Xu, Feng
    Huang, Wentao
    Zhou, Lanbo
    Tai, Nengling
    Wen, Juan
    Cao, Liangliang
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,