Quantum machine learning in the latent space of high energy physics events

被引:0
|
作者
Wozniak, Kinga Anna [1 ,2 ]
Belis, Vasilis [1 ,3 ]
Pierini, Maurizio [1 ]
Vallecorsa, Sofia [1 ]
Dissertori, Gunther [3 ]
Barkoutsos, Panagiotis [4 ]
Tavernelli, Ivano [4 ]
机构
[1] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland
[2] Univ Vienna, A-1090 Vienna, Austria
[3] ETH, Zurich, Switzerland
[4] IBM Res Zurich, IBM Quantum, CH-8803 Ruschlikon, Switzerland
关键词
D O I
10.1088/1742-6596/2438/1/012115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate supervised and unsupervised quantum machine learning algorithms in the context of typical data analyses at the LHC. To accommodate the constraints on the problem size, dictated by limitations on the quantum hardware, we concatenate the quantum algorithms to the encoder of a classical convolutional autoencoder, used for dimensionality reduction. We present results for a quantum classifier and a quantum anomaly detection algorithm, comparing performance to corresponding classical algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Machine learning for event selection in high energy physics
    Whiteson, Shimon
    Whiteson, Daniel
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (08) : 1203 - 1217
  • [12] Machine Learning for Columnar High Energy Physics Analysis
    Kauffman, Elliott
    Held, Alexander
    Shadura, Oksana
    26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [13] High?energy nuclear physics meets machine learning
    Wan?Bing He
    Yu?Gang Ma
    Long?Gang Pang
    Hui?Chao Song
    Kai Zhou
    NuclearScienceandTechniques, 2023, 34 (06) : 84 - 116
  • [14] Unsupervised quantum circuit learning in high energy physics
    Delgado, Andrea
    Hamilton, Kathleen E.
    PHYSICAL REVIEW D, 2022, 106 (09)
  • [15] Quantum data learning for quantum simulations in high-energy physics
    Nagano, Lento
    Miessen, Alexander
    Onodera, Tamiya
    Tavernelli, Ivano
    Tacchino, Francesco
    Terashi, Koji
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [16] MACHINE LEARNING meets QUANTUM PHYSICS
    Das Sarma, Sankar
    Deng, Dong-Ling
    Duan, Lu-Ming
    PHYSICS TODAY, 2019, 72 (03) : 48 - 54
  • [17] Quantum machine learning for chemistry and physics
    Sajjan, Manas
    Li, Junxu
    Selvarajan, Raja
    Sureshbabu, Shree Hari
    Kale, Sumit Suresh
    Gupta, Rishabh
    Singh, Vinit
    Kais, Sabre
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (15) : 6475 - 6573
  • [18] High-energy nuclear physics meets machine learning
    Wan-Bing He
    Yu-Gang Ma
    Long-Gang Pang
    Hui-Chao Song
    Kai Zhou
    Nuclear Science and Techniques, 2023, 34
  • [19] High-energy nuclear physics meets machine learning
    He, Wan-Bing
    Ma, Yu-Gang
    Pang, Long-Gang
    Song, Hui-Chao
    Zhou, Kai
    NUCLEAR SCIENCE AND TECHNIQUES, 2023, 34 (06)
  • [20] Studying high-energy nuclear physics with machine learning
    Pang, Long-Gang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2024, 33 (06):