Structural Vibration Data Anomaly Detection Based on Multiple Feature Information Using CNN-LSTM Model

被引:7
|
作者
Zhang, Xiulin [1 ,2 ,3 ]
Zhou, Wensong [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Anomaly detection - Data mining - Decision making - Frequency domain analysis - Spectral density - Structural dynamics - Structural health monitoring - Time domain analysis;
D O I
10.1155/2023/3906180
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural health monitoring (SHM) system has been operating for a long time in a harsh environment, resulting in various abnormalities in the collected structural vibration monitoring data. Detecting these abnormal data not only requires user interaction but also is quite time-consuming. Inspired by the manual recognition process, a vibration data anomaly detection method based on the combined model of convolutional neural network (CNN) and long short-term memory (LSTM) network is proposed in this paper. This method simulates intelligent human decision making in two steps. First, the original data are reconstructed by two feature sequences with higher universality and smaller size. In the time domain, the residual signal is extracted from the upper and lower peak envelopes of the original data to characterize the symmetry of the data. In the frequency domain, the power spectral density sequence of the original data is extracted to characterize the interpretability of the data. Second, a CNN-LSTM model is constructed and trained which utilizes CNN to extract local high-level features of input sequence and inputs new continuous high-level feature representations into LSTM to learn global long-term dependencies of abnormal data features. For verification, the method was applied to the automatic classification of continuous monitoring data for 42 days of long-span bridge, and the average accuracy of the classification results exceeded 94% and the detection time was 78 minutes. Compared with existing methods, this method can detect abnormal data more accurately and efficiently and has a stronger generalization ability.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Anomaly Detection in Predicted Water Treatment Data using Hybrid CNN-LSTM Network Model
    Ozgenc, Busra
    Ayas, Selen
    Dogan, Ramazan Ozgur
    Cavdar, Bora
    Sahin, Ali Klvanc
    Ayas, Mustafa Sinasi
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [2] Intrusion Detection Using Attention-Based CNN-LSTM Model
    Al-Omar, Ban
    Trabelsi, Zouheir
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT I, 2023, 675 : 515 - 526
  • [3] A Hybrid CNN-LSTM Based Approach for Anomaly Detection Systems in SDNs
    Abdallah, Mahmoud Said
    Nhien-An-Le-Khac
    Jahromi, Hamed Z.
    Jurcut, Anca Delia
    ARES 2021: 16TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, 2021,
  • [4] Epilepsy Detection from EEG Data Using a Hybrid CNN-LSTM Model
    Neloy, Md. Arif Istiak
    Biswas, Anik
    Nahar, Nazmun
    Hossain, Mohammad Shahadat
    Andersson, Karl
    BRAIN INFORMATICS (BI 2022), 2022, 13406 : 253 - 263
  • [5] Hybrid Feature Optimization for Voice Spoof Detection Using CNN-LSTM
    Neelima, Medikonda
    Prabha, I. Santi
    TRAITEMENT DU SIGNAL, 2024, 41 (02) : 717 - 727
  • [6] Anomaly Detection for In-Vehicle Network Using CNN-LSTM With Attention Mechanism
    Sun, Heng
    Chen, Miaomiao
    Weng, Jian
    Liu, Zhiquan
    Geng, Guanggang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (10) : 10880 - 10893
  • [7] Improvement of Anomaly Detection System in the IoT Networks using CNN-LSTM Approach
    Benaddi, H.
    Jouhari, M.
    Ibrahimi, K.
    Benslimane, A.
    Amhoud, E. M.
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 3771 - 3776
  • [8] Chinese Grammatical Error Detection Using a CNN-LSTM Model
    Lee, Lung-Hao
    Lin, Bo-Lin
    Yu, Liang-Chih
    Tseng, Yuen-Hsien
    25TH INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION (ICCE 2017): TECHNOLOGY AND INNOVATION: COMPUTER-BASED EDUCATIONAL SYSTEMS FOR THE 21ST CENTURY, 2017, : 919 - 921
  • [9] A Novel Quench Detection Method Based on CNN-LSTM Model
    Zhou, Xiao
    Shi, Jing
    Gong, Kang
    Zhu, Changdong
    Hua, Jing
    Xu, Jun
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [10] CNN-LSTM based Approach for DDoS Detection
    Alasmari, Tahani
    Eshmawi, Ala'
    Alshomrani, Adel
    Hsairi, Lobna
    2023 EIGHTH INTERNATIONAL CONFERENCE ON MOBILE AND SECURE SERVICES, MOBISECSERV, 2023,