Structural Vibration Data Anomaly Detection Based on Multiple Feature Information Using CNN-LSTM Model

被引:7
|
作者
Zhang, Xiulin [1 ,2 ,3 ]
Zhou, Wensong [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Anomaly detection - Data mining - Decision making - Frequency domain analysis - Spectral density - Structural dynamics - Structural health monitoring - Time domain analysis;
D O I
10.1155/2023/3906180
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural health monitoring (SHM) system has been operating for a long time in a harsh environment, resulting in various abnormalities in the collected structural vibration monitoring data. Detecting these abnormal data not only requires user interaction but also is quite time-consuming. Inspired by the manual recognition process, a vibration data anomaly detection method based on the combined model of convolutional neural network (CNN) and long short-term memory (LSTM) network is proposed in this paper. This method simulates intelligent human decision making in two steps. First, the original data are reconstructed by two feature sequences with higher universality and smaller size. In the time domain, the residual signal is extracted from the upper and lower peak envelopes of the original data to characterize the symmetry of the data. In the frequency domain, the power spectral density sequence of the original data is extracted to characterize the interpretability of the data. Second, a CNN-LSTM model is constructed and trained which utilizes CNN to extract local high-level features of input sequence and inputs new continuous high-level feature representations into LSTM to learn global long-term dependencies of abnormal data features. For verification, the method was applied to the automatic classification of continuous monitoring data for 42 days of long-span bridge, and the average accuracy of the classification results exceeded 94% and the detection time was 78 minutes. Compared with existing methods, this method can detect abnormal data more accurately and efficiently and has a stronger generalization ability.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Parkinson's disease detection and classification using EEG based on deep CNN-LSTM model
    Li, Kuan
    Ao, Bin
    Wu, Xin
    Wen, Qing
    Ul Haq, Ejaz
    Yin, Jianping
    BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, 2024, 40 (03) : 2577 - 2596
  • [22] Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data
    Chung, Jaewon
    Jang, Beakcheol
    PLOS ONE, 2022, 17 (11):
  • [23] Botnet Attack Detection by Using CNN-LSTM Model for Internet of Things Applications
    Alkahtani, Hasan
    Aldhyani, Theyazn H. H.
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [24] Key frame-based CNN-LSTM model for deepfake video detection
    Cheng, Yan
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [25] Traffic Flow Prediction with Heterogenous Data Using a Hybrid CNN-LSTM Model
    Wang, Jing-Doo
    Susanto, Chayadi Oktomy Noto
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (03): : 3097 - 3112
  • [26] A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM
    Garcia, Carlos Iturrino
    Grasso, Francesco
    Luchetta, Antonio
    Piccirilli, Maria Cristina
    Paolucci, Libero
    Talluri, Giacomo
    APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 22
  • [27] Projectile Trajectory Prediction Based on CNN-LSTM Model
    Zheng Z.
    Guan X.
    Fu J.
    Ma X.
    Yin S.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (10): : 2975 - 2983
  • [28] Exploiting Multiple Receivers for CSI-Based Activity Classification Using A Hybrid CNN-LSTM Model
    PROCEEDINGS OF THE 1ST ACMWORKSHOP ON DEVICE-FREE HUMAN SENSING (DFHS 19), 2019, : 18 - 21
  • [29] MALICIOUS URL RECOGNITION AND DETECTION USING ATTENTION-BASED CNN-LSTM
    Peng, Yongfang
    Tian, Shengwei
    Yu, Long
    Lv, Yalong
    Wang, Ruijin
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (11) : 5580 - 5593
  • [30] PM2.5 Concentration Prediction Using CNN-LSTM Model Based on Multi-Feature Fusion
    Wang, Zhiwen
    Huang, Jiexia
    Huang, Junlin
    Wang, Yuhang
    Zhang, Canlong
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2025, 37 (4-5):