Electrical programmable multilevel nonvolatile photonic random-access memory

被引:33
|
作者
Meng, Jiawei [1 ]
Gui, Yaliang [1 ]
Nouri, Behrouz Movahhed [1 ]
Ma, Xiaoxuan [1 ]
Zhang, Yifei [4 ]
Popescu, Cosmin-Constantin [4 ]
Kang, Myungkoo [5 ]
Miscuglio, Mario [1 ]
Peserico, Nicola [1 ,2 ,3 ]
Richardson, Kathleen [5 ]
Hu, Juejun [4 ]
Dalir, Hamed [1 ,2 ,3 ]
Sorger, Volker J. [1 ,2 ,3 ]
机构
[1] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA
[2] Univ Florida, Florida Semicond Inst, Gainesville, FL 32603 USA
[3] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32603 USA
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
关键词
Conversion loss - Data link - Low-loss - Multilevel memory - Multilevels - Neumann - Nonvolatile - On chips - Photonic memory - Random access memory;
D O I
10.1038/s41377-023-01213-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/& mu;m and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100x improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Magnetic random-access memory
    Staedter, Tracy
    Technology Review, 2002, 105 (06)
  • [12] RANDOM-ACCESS HOLOGRAPHIC MEMORY
    GRAMMATIN, AP
    GUSEV, VK
    DOLGOVA, EV
    ZIMOGLYADOVA, EA
    MITSAI, VN
    NOVIKOV, AA
    PANKRATOV, VM
    SOMOV, VG
    FEDOROV, VB
    YURCHIKOV, BM
    SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1988, 55 (06): : 347 - 349
  • [13] Recent Advances in Halide Perovskite-Based Nonvolatile Resistive Random-Access Memory
    Abubakkar Siddik
    Pranab Kumar Sarkar
    Prabir Kumar Haldar
    Journal of Electronic Materials, 2022, 51 : 434 - 446
  • [14] Recent Advances in Halide Perovskite-Based Nonvolatile Resistive Random-Access Memory
    Siddik, Abubakkar
    Sarkar, Pranab Kumar
    Haldar, Prabir Kumar
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (02) : 434 - 446
  • [15] Novel nonvolatile random-access memory with Si nanocrystals for ultralow-power scheme
    Shibata, A
    Kotaki, H
    Ogura, T
    Arai, N
    Adachi, K
    Kito, A
    Kakimoto, S
    Sakai, A
    Zaima, S
    Yasuda, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (4B): : 2387 - 2390
  • [16] Novel nonvolatile random-access memory with Si nanocrystals for ultralow-power scheme
    Shibata, Akihide
    Kotaki, Hiroshi
    Ogura, Takayuki
    Arai, Nobutoshi
    Adachi, Kouichiro
    Kito, Atsunori
    Kakimoto, Seizo
    Sakai, Akira
    Zaima, Shigeaki
    Yasuda, Yukio
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2003, 42 (4 B): : 2387 - 2390
  • [17] RANDOM-ACCESS MEMORY SEQUENCE SIMULATOR/EMULATOR FOR HIERARCHICAL MULTILEVEL ARRAYS.
    Anon
    IBM technical disclosure bulletin, 1986, 29 (01): : 97 - 102
  • [18] THE RANDOM-ACCESS MEMORY ACCOUNTING MACHINE .2. THE MAGNETIC-DISK, RANDOM-ACCESS MEMORY
    NOYES, T
    DICKINSON, WE
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1957, 1 (01) : 72 - 75
  • [19] DYNAMIC REFRESH FOR RANDOM-ACCESS MEMORY
    不详
    ELECTRONIC ENGINEERING, 1976, 48 (583): : 19 - 19
  • [20] Nonvolatile Random-Access-Memory.
    Siebert, Hanns-Peter
    Elektronik Munchen, 1985, 34 (02): : 73 - 79