Parameter estimation for ergodic linear SDEs from partial and discrete observations

被引:2
|
作者
Kurisaki, Masahiro [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
关键词
Partially observed linear model; State space model; Hidden Ornstein Uhlenbeck model; Kalman-Bucy filter; Quasi-likelihood analysis;
D O I
10.1007/s11203-023-09288-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a problem of parameter estimation for the state space model described by linear stochastic differential equations. We assume that an unobservable Ornstein-Uhlenbeck process drives another observable process by the linear stochastic differential equation, and these two processes depend on some unknown parameters. We construct the quasi-maximum likelihood estimator of the unknown parameters and show asymptotic properties of the estimator.
引用
收藏
页码:279 / 330
页数:52
相关论文
共 50 条
  • [21] Parameter estimation for reflected Ornstein–Uhlenbeck processes with discrete observations
    Hu Y.
    Lee C.
    Lee M.H.
    Song J.
    Statistical Inference for Stochastic Processes, 2015, 18 (3) : 279 - 291
  • [22] Parameter estimation for SPDEs based on discrete observations in time and space
    Hildebrandt, Florian
    Trabs, Mathias
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2716 - 2776
  • [23] Estimation in partial linear EV models with replicated observations
    Cui, HJ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (01): : 144 - 159
  • [24] Estimation in partial linear EV models with replicated observations
    Hengjian Cui
    Science in China Series A: Mathematics, 2004, 47
  • [25] Estimation in partial linear EV models with replicated observations
    CUI HengjianDepartment of Mathematics
    Science China Mathematics, 2004, (01) : 144 - 159
  • [26] LAN property for ergodic diffusions with discrete observations
    Gobet, E
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (05): : 711 - 737
  • [27] Estimation of plasma parameter profiles and their derivatives from linear observations by using Gaussian processes
    Nishizawa, T.
    Tokuda, S.
    Kobayashi, T.
    Tanaka, K.
    Funaba, H.
    Yamada, I
    Takemura, Y.
    Tokuzawa, T.
    Yasuhara, R.
    Uehara, H.
    Ida, K.
    Takahashi, H.
    Kawachi, Y.
    Inagaki, S.
    Kado, S.
    Sasaki, M.
    Fujisawa, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (12)
  • [28] Parameter estimation for mean-reversion type stochastic differential equations from discrete observations
    Wei, Chao
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2022, 15 (02) : 117 - 131
  • [29] Parameter Estimation for a Fractional Black-Scholes Model with Jumps from Discrete Time Observations
    Thony, John-Fritz
    Vaillant, Jean
    MATHEMATICS, 2022, 10 (22)
  • [30] Parameter estimation of linear frequency modulated signals with missing observations
    Brcich, R
    Zoubir, AM
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 569 - 572