Genome-wide identification of bHLH transcription factors and their response to salt stress in Cyclocarya paliurus

被引:15
|
作者
Zhang, Zijie [1 ]
Fang, Jie [1 ]
Zhang, Lei [1 ,2 ]
Jin, Huiyin [1 ]
Fang, Shengzuo [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Coll Forestry, Nanjing, Peoples R China
[2] Coinnovat Ctr Sustainable Forestry Southern China, Nanjing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
wheel wingnut; bHLH family genes; CpbHLH genes; salt tolerance; expression analysis; regulation networks; ABIOTIC STRESS; EXPRESSION ANALYSES; ARABIDOPSIS; TOLERANCE; GENE; MYC; EVOLUTIONARY; DROUGHT; PLANTS; WHEAT;
D O I
10.3389/fpls.2023.1117246
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
As a highly valued and multiple function tree species, the leaves of Cyclocarya paliurus are enriched in diverse bioactive substances with healthy function. To meet the requirement for its leaf production and medical use, the land with salt stress would be a potential resource for developing C. paliurus plantations due to the limitation of land resources in China. The basic helix-loop-helix (bHLH) transcription factor protein family, the second largest protein family in plants, has been found to play essential roles in the response to multiple abiotic stresses, especially salt stress. However, the bHLH gene family in C.paliurus has not been investigated. In this study, 159 CpbHLH genes were successfully identified from the whole-genome sequence data, and were classified into 26 subfamilies. Meanwhile, the 159 members were also analyzed from the aspects of protein sequences alignment, evolution, motif prediction, promoter cis-acting elements analysis and DNA binding ability. Based on transcriptome profiling under a hydroponic experiment with four salt concentrations (0%, 0.15%, 0.3%, and 0.45% NaCl), 9 significantly up- or down-regulated genes were screened, while 3 genes associated with salt response were selected in term of the GO annotation results. Totally 12 candidate genes were selected in response to salt stress. Moreover, based on expression analysis of the 12 candidate genes sampled from a pot experiment with three salt concentrations (0%, 0.2% and 0.4% NaCl), CpbHLH36/68/146 were further verified to be involved in the regulation of salt tolerance genes, which is also confirmed by protein interaction network analysis. This study was the first analysis of the transcription factor family at the genome-wide level of C. paliurus, and our findings would not only provide insight into the function of the CpbHLH gene family members involved in salt stress but also drive progress in genetic improvement for the salt tolerance of C. paliurus.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Genome-wide identification and expression pattern analysis of the kiwifruit GRAS transcription factor family in response to salt stress
    Ling Zhu
    Tuo Yin
    Mengjie Zhang
    Xiuyao Yang
    Jiexin Wu
    Hanbing Cai
    Na Yang
    Xulin Li
    Ke Wen
    Daming Chen
    Hanyao Zhang
    Xiaozhen Liu
    BMC Genomics, 25
  • [42] Genome-Wide Identification of WRKY Transcription Factor Family in Chinese Rose and Response to Drought, Heat, and Salt Stress
    Yan, Xinyu
    Zhao, Jiahui
    Huang, Wei
    Liu, Cheng
    Hao, Xuan
    Gao, Chengye
    Deng, Minghua
    Wen, Jinfen
    GENES, 2024, 15 (06)
  • [43] Genome-wide identification of the HKT transcription factor family and their response to salt stress in foxtail millet (Setaria italica)
    Yulu Yang
    Jinjin Cheng
    Huarui Han
    Rong Sun
    Yajun Li
    Yakun Zhang
    Yuanhuai Han
    Hui Zhang
    Xukai Li
    Plant Growth Regulation, 2023, 99 : 113 - 123
  • [44] Genome-wide identification of the HKT transcription factor family and their response to salt stress in foxtail millet (Setaria italica)
    Yang, Yulu
    Cheng, Jinjin
    Han, Huarui
    Sun, Rong
    Li, Yajun
    Zhang, Yakun
    Han, Yuanhuai
    Zhang, Hui
    Li, Xukai
    PLANT GROWTH REGULATION, 2023, 99 (01) : 113 - 123
  • [45] Genome-Wide Characterization of the GRAS Gene Family in Cyclocarya paliurus and Its Involvement in Heterodichogamy
    Wang, Qian
    Yang, Yibo
    Yu, Yanhao
    Mei, Di
    Mao, Xia
    Fu, Xiangxiang
    AGRONOMY-BASEL, 2024, 14 (10):
  • [46] Genome-wide identification and expression pattern analysis of the kiwifruit GRAS transcription factor family in response to salt stress
    Zhu, Ling
    Yin, Tuo
    Zhang, Mengjie
    Yang, Xiuyao
    Wu, Jiexin
    Cai, Hanbing
    Yang, Na
    Li, Xulin
    Wen, Ke
    Chen, Daming
    Zhang, Hanyao
    Liu, Xiaozhen
    BMC GENOMICS, 2024, 25 (01)
  • [47] Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery
    Yang, Qing-Qing
    Feng, Kai
    Xu, Zhi-Sheng
    Duan, Ao-Qi
    Liu, Jie-Xia
    Xiong, Ai-Sheng
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2019, 33 (01) : 707 - 718
  • [48] Genome-wide analysis of MYB transcription factors and their responses to salt stress in Casuarina equisetifolia
    Yujiao Wang
    Yong Zhang
    Chunjie Fan
    Yongcheng Wei
    Jingxiang Meng
    Zhen Li
    Chonglu Zhong
    BMC Plant Biology, 21
  • [49] Genome-Wide Analysis of bZIP Transcription Factors and Expression Patterns in Response to Salt and Drought Stress in Vaccinium corymbosum
    Feng, Xinghua
    Wang, Chuchu
    Jia, Sijin
    Wang, Jiaying
    Zhou, Lianxia
    Song, Yan
    Guo, Qingxun
    Zhang, Chunyu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (02)
  • [50] Genome-wide analysis of MYB transcription factors and their responses to salt stress in Casuarina equisetifolia
    Wang, Yujiao
    Zhang, Yong
    Fan, Chunjie
    Wei, Yongcheng
    Meng, Jingxiang
    Li, Zhen
    Zhong, Chonglu
    BMC PLANT BIOLOGY, 2021, 21 (01)