YOLO-Xray: A Bubble Defect Detection Algorithm for Chip X-ray Images Based on Improved YOLOv5

被引:10
|
作者
Wang, Jie [1 ]
Lin, Bin [2 ]
Li, Gaomin [1 ]
Zhou, Yuezheng [1 ]
Zhong, Lijun [1 ]
Li, Xuan [3 ]
Zhang, Xiaohu [1 ]
机构
[1] Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Guangzhou 510725, Peoples R China
[2] Fujian Normal Univ, Coll Photon & Elect Engn, Fuzhou 350117, Peoples R China
[3] China Aerosp Components Engn Ctr, Beijing 100094, Peoples R China
关键词
bi-direction feature fusion; bubble defect detection; deep learning; X-ray images; YOLOv5; INSPECTION SYSTEM;
D O I
10.3390/electronics12143060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the manufacturing of chips, the accurate and effective detection of internal bubble defects of chips is essential to maintain product reliability. In general, the inspection is performed manually by viewing X-ray images, which is time-consuming and less reliable. To solve the above problems, an improved bubble defect detection model YOLO-Xray based on the YOLOv5 algorithm for chip X-ray images is proposed. First, the chip X-ray images are preprocessed by image segmentation to construct the chip X-ray defect dataset, namely, CXray. Then, in the input stage, the K-means++ algorithm is used to re-cluster the CXray dataset to generate the anchors suitable for our dataset. In the backbone network, a micro-scale detection head is added to improve the capabilities for small defect detection. In the neck network, the bi-direction feature fusion idea of BiFPN is used to construct a new feature fusion network based on the improved backbone to fuse the semantic features of different layers. In addition, the Quality Focal Loss function is used to replace the cross-entropy loss function to solve the imbalance of positive and negative samples. The experimental results show that the mean average precision (mAP) of the YOLO-Xray algorithm on the CXray dataset reaches 93.5%, which is 5.1% higher than the original YOLOv5. Meanwhile, the YOLO-Xray algorithm achieves state-of-the-art detection accuracy and speed compared with other mainstream object detection models. This shows the proposed YOLO-Xray algorithm can provide technical support for bubble defect detection in chip X-ray images. The CXray dataset is also open and available at CXray.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] An Improved Underwater Object Detection Algorithm Based on YOLOv5 for Blurry Images
    Cheng, Liyan
    Zhou, Hui
    Le, Xingni
    Chen, Wanru
    Tao, Hechuan
    Ding, Jiarui
    Wang, Xinru
    Wang, Ruizhi
    Yang, Qunhui
    Chen, Chen
    Kong, Meiwei
    2024 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND WIRELESS OPTICAL COMMUNICATIONS, ICWOC, 2024, : 42 - 47
  • [32] YOLO-VanNet: An Improved YOLOv5 Method for PCB Surface Defect Detection
    Chen, Fanglin
    Shi, Chenyang
    Zhu, Donglin
    Zhou, Changjun
    WEB AND BIG DATA, APWEB-WAIM 2024, PT I, 2024, 14961 : 451 - 465
  • [33] PCB-YOLO: An Improved Detection Algorithm of PCB Surface Defects Based on YOLOv5
    Tang, Junlong
    Liu, Shenbo
    Zhao, Dongxue
    Tang, Lijun
    Zou, Wanghui
    Zheng, Bin
    SUSTAINABILITY, 2023, 15 (07)
  • [34] EDF-YOLOv5: An Improved Algorithm for Power Transmission Line Defect Detection Based on YOLOv5
    Peng, Hongxing
    Liang, Minjun
    Yuan, Chang
    Ma, Yongqiang
    ELECTRONICS, 2024, 13 (01)
  • [35] Improved Yolov5 Algorithm for Surface Defect Detection of Solar Cell
    Li, Pengjie
    Shan, Shuo
    Zeng, Pengzhong
    Wei, Haikun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3601 - 3605
  • [36] Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5
    Yuan T.-L.
    Yuan J.-L.
    Zhu Y.-J.
    Zheng H.-C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (12): : 2349 - 2357
  • [37] Surface Defect Detection Method of Wooden Spoon Based on Improved YOLOv5 Algorithm
    Tian, Siqing
    Li, Xiao
    Fang, Xiaolin
    Qi, Xiaozhong
    Li, Jichao
    BIORESOURCES, 2023, 18 (04) : 7713 - 7730
  • [38] Metal surface defect detection based on improved YOLOv5
    Zhou, Chuande
    Lu, Zhenyu
    Lv, Zhongliang
    Meng, Minghui
    Tan, Yonghu
    Xia, Kewen
    Liu, Kang
    Zuo, Hailun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [39] Automatic Fabric Defect Detection Based on an Improved YOLOv5
    Jin, Rui
    Niu, Qiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [40] Surface Defect Detection of Preform Based on Improved YOLOv5
    Hou, Jiatong
    You, Bo
    Xu, Jiazhong
    Wang, Tao
    Cao, Moran
    APPLIED SCIENCES-BASEL, 2023, 13 (13):