Energy-efficient and noise-tolerant neuromorphic computing based on memristors and domino logic

被引:1
|
作者
Hendy, Hagar [1 ]
Merkel, Cory [1 ]
机构
[1] Rochester Inst Technol, Dept Comp Engn, Brain Lab, Rochester, NY 14623 USA
来源
关键词
neuromorphic; memristor; neural network; domino logic; artificial intelligence; MATRIX MULTIPLIER; SYSTEMS; DESIGN;
D O I
10.3389/fnano.2023.1128667
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The growing scale and complexity of artificial intelligence (AI) models has prompted several new research efforts in the area of neuromorphic computing. A key aim of neuromorphic computing is to enable advanced AI algorithms to run on energy-constrained hardware. In this work, we propose a novel energy-efficient neuromorphic architecture based on memristors and domino logic. The design uses the delay of memristor RC circuits to represent synaptic computations and a simple binary neuron activation function. Synchronization schemes are proposed for communicating information between neural network layers, and a simple linear power model is developed to estimate the design's energy efficiency for a particular network size. Results indicate that the proposed architecture can achieve 1.26 fJ per classification per synapse and achieves high accuracy on image classification even in the presence of large noise.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Reconfigurable logic in nanosecond Cu/GeTe/TiN filamentary memristors for energy-efficient in-memory computing
    Jin, Miao-Miao
    Cheng, Long
    Li, Yi
    Hu, Si-Yu
    Lu, Ke
    Chen, Jia
    Duan, Nian
    Wang, Zhuo-Rui
    Zhou, Ya-Xiong
    Chang, Ting-Chang
    Miao, Xiang-Shui
    NANOTECHNOLOGY, 2018, 29 (38)
  • [22] Energy-Efficient Single-Flux-QuantumBased Neuromorphic Computing
    Schneider, Michael L.
    Donnelly, Christine A.
    Russek, Stephen E.
    Baek, Burm
    Pufall, Matthew R.
    Hopkins, Peter F.
    Rippard, William H.
    2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 24 - 27
  • [23] Design of Nanoelectronic ICs: Noise-Tolerant Logic Based on Cyclic BDD
    Yanushkevich, S. N.
    Tangim, G.
    Kasai, S.
    Lyshevski, S. E.
    Shmerko, V. P.
    2012 12TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2012,
  • [24] Energy efficient and noise-tolerant XOR-XNOR circuit design
    Goel, S
    Elgamel, MA
    Bayoumi, M
    VLSI'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VLSI, 2003, : 125 - 128
  • [25] AxNN: Energy-Efficient Neuromorphic Systems using Approximate Computing
    Venkataramani, Swagath
    Ranjan, Ashish
    Roy, Kaushik
    Raghunathan, Anand
    PROCEEDINGS OF THE 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2014, : 27 - 32
  • [26] Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges
    Hoffmann, Axel
    Ramanathan, Shriram
    Grollier, Julie
    Kent, Andrew D.
    Rozenberg, Marcelo J.
    Schuller, Ivan K.
    Shpyrko, Oleg G.
    Dynes, Robert C.
    Fainman, Yeshaiahu
    Frano, Alex
    Fullerton, Eric E.
    Galli, Giulia
    Lomakin, Vitaliy
    Ong, Shyue Ping
    Petford-Long, Amanda K.
    Schuller, Jonathan A.
    Stiles, Mark D.
    Takamura, Yayoi
    Zhu, Yimei
    APL MATERIALS, 2022, 10 (07)
  • [27] Organic Optoelectronic Synaptic Devices for Energy-Efficient Neuromorphic Computing
    Li, Qingxuan
    Wang, Tianyu
    Hu, Xuemeng
    Wu, Xiaohan
    Zhu, Hao
    Ji, Li
    Sun, Qingqing
    Zhang, David Wei
    Chen, Lin
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (07) : 1089 - 1092
  • [28] Energy-Efficient and High-Throughput Nanophotonic Neuromorphic Computing
    Nazirzadeh, Mohammadamin
    Shamsabardeh, Mohammadsadegh
    Ben Yoo, S. J.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [29] Flexible Organic Electrochemical Transistors for Energy-Efficient Neuromorphic Computing
    Zhu, Li
    Lin, Junchen
    Zhu, Yixin
    Wu, Jie
    Wan, Xiang
    Sun, Huabin
    Yu, Zhihao
    Xu, Yong
    Tan, Cheeleong
    NANOMATERIALS, 2024, 14 (14)
  • [30] A new noise-tolerant dynamic logic circuit design
    Frustaci, Fabio
    Corsonello, Pasquale
    Cocorullo, Giuseppe
    2007 PH.D RESEARCH IN MICROELECTRONICS AND ELECTRONICS, 2007, : 233 - 236