An experimental and analytical study of wind turbine wakes under pressure gradient

被引:15
|
作者
Dar, Arslan Salim [1 ]
Gertler, Abraham Starbuck [1 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Wind Engn & Renewable Energy Lab WIRE, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
ATMOSPHERIC STABILITY; COMPLEX TERRAIN; PERFORMANCE; TURBULENCE; TOPOGRAPHY;
D O I
10.1063/5.0145043
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work is dedicated to the systematic investigation of wind turbine wakes under the effect of pressure gradients. Wind tunnel experiments are carried out with a wind turbine positioned on straight ramps of increasing angle such that it experiences an approximately linear flow speed-up/slow-down from the induction region into the far wake. Fifteen ramp angles are studied: 7 favorable (FPG), 7 adverse (APG), and 1 zero pressure gradient. The wake center is shown to follow the base flow streamline originating from a virtual turbine hub height. A quasi-linear relationship between the pressure gradient and near wake length is demonstrated. Far wake characteristics, such as the recovery of the wake center velocity deficit and wake growth rate, are observed to systematically vary with the pressure gradient. The wake recovery rate increases (decreases) with the increase in the FPG (APG), and the wake growth rate shows a linear increase from most favorable to most adverse pressure gradient. The turbine power coefficient decreases significantly with increasing APG to a greater degree than the increase in power coefficient under FPG. The engineering approach of superposing the wake deficit predicted by the standard Gaussian model on the modified base flow is shown to work for very moderate pressure gradients. In light of this, a threshold in terms of flow speed-up/slow-down along the wake trajectory is established, below which the engineering approach can be reasonably employed. Finally, a physics-based model for wakes under the pressure gradient is tested. A new theoretical relation for near wake length under the pressure gradient is proposed. Using the theoretical near wake length, the pressure gradient model predicts the turbine wakes for all cases with good accuracy and shows a significant improvement from the engineering approach.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Turbulent planar wakes under pressure gradient conditions
    Shamsoddin, Sina
    Porte-Agel, Fernando
    JOURNAL OF FLUID MECHANICS, 2017, 830
  • [22] Turbulent Wind Turbine Wakes in a Wind Farm
    Brand, Arno J.
    Wagenaar, Jan Willem
    PROGRESS IN TURBULENCE AND WIND ENERGY IV, 2012, 141 : 231 - 234
  • [23] A wind tunnel study of adverse pressure gradient impact on wind turbine wake dynamics
    Bayron, Paul
    Kelso, Richard
    Chin, Rey
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 105
  • [24] Numerical investigation of wind turbine wakes under high thrust coefficient
    Martinez-Tossas, Luis A.
    Branlard, Emmanuel
    Shaler, Kelsey
    Vijayakumar, Ganesh
    Ananthan, Shreyas
    Sakievich, Philip
    Jonkman, Jason
    WIND ENERGY, 2022, 25 (04) : 605 - 617
  • [25] Numerical modeling of wind turbine wakes
    Sorensen, JN
    Shen, WZ
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 393 - 399
  • [26] Dynamic soaring in wind turbine wakes
    Harzer, Jakob
    De Schutter, Jochem
    Diehl, Moritz
    Meyers, Johan
    EUROPEAN JOURNAL OF CONTROL, 2023, 74
  • [27] Stability of Floating Wind Turbine Wakes
    Kleine, V. G.
    Franceschini, L.
    Carmo, B. S.
    Hanifi, A.
    Henningson, D. S.
    WAKE CONFERENCE 2021, 2021, 1934
  • [28] Wind turbine wakes over hills
    ShaMsoddin, Sina
    Porte-Agel, Fernando
    JOURNAL OF FLUID MECHANICS, 2018, 855 : 671 - 702
  • [29] Comparison study between wind turbine and power kite wakes
    Haas, T.
    Meyers, J.
    WAKE CONFERENCE 2017, 2017, 854
  • [30] Numerical computations of wind turbine wakes
    Ivanell, Stefan
    Sorensen, Jens N.
    Henningson, Dan
    WIND ENERGY, 2007, : 259 - +