Some functional inequalities under lower Bakry-Émery-Ricci curvature bounds with ε-range

被引:0
|
作者
Fujitani, Yasuaki [1 ]
机构
[1] Osaka Univ, Dept Math, Osaka 5600043, Japan
关键词
53C21; 58J50; 53C20; WEIGHTED RICCI CURVATURE; COMPARISON-THEOREMS; MANIFOLDS;
D O I
10.1007/s00229-024-01537-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n-dimensional weighted Riemannian manifolds, lower m-Bakry-& Eacute;mery-Ricci curvature bounds with epsilon-range, introduced by Lu-Minguzzi-Ohta (Anal Geom Metr Spaces 10(1):1-30, 2022), integrate constant lower bounds and certain variable lower bounds in terms of weight functions. In this paper, we prove a Cheng type inequality and a local Sobolev inequality under lower m-Bakry-& Eacute;mery-Ricci curvature bounds with epsilon-range. These generalize those inequalities under constant curvature bounds for m is an element of (n, infinity) to m is an element of (-infinity, 1] boolean OR {infinity}.
引用
收藏
页码:75 / 95
页数:21
相关论文
共 37 条