Feature embedding in click-through rate prediction

被引:0
|
作者
Pahor, Samo [1 ]
Kopic, Davorin [1 ]
Demsar, Jure [2 ]
机构
[1] Outbrain Slovenia, Dunajska Cesta 5, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
来源
ELEKTROTEHNISKI VESTNIK | 2023年 / 90卷 / 03期
关键词
real-time bidding; click-through rate prediction; feature embedding; feature transformation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We tackle the challenge of feature embedding for the purposes of improving the click-through rate prediction process. We select three models: logistic regression, factorization machines and deep factorization machines, as our baselines and propose five different feature embedding modules: embedding scaling, FM embedding, embedding encoding, NN embedding and the embedding reweighting module. The embedding modules act as a way to improve baseline model feature embeddings and are trained alongside the rest of the model parameters in an end-to-end manner. Each module is individually added to a baseline model to obtain a new augmented model. We test the predictive performance of our augmented models on a publicly accessible dataset used for benchmarking click-through rate prediction models. Our results show that several proposed embedding modules provide an important increase in predictive performance without a drastic increase in training time.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [21] Click-Through Rate Prediction Combining Mutual Information Feature Weighting and Feature Interaction
    Wang, Xiaowei
    Dong, Hongbin
    Han, Shuang
    IEEE ACCESS, 2020, 8 (08): : 207216 - 207225
  • [22] XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction
    Yu, Runlong
    Ye, Yuyang
    Liu, Qi
    Wang, Zihan
    Yang, Chunfeng
    Hu, Yucheng
    Chen, Enhong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT II, 2021, 12713 : 436 - 447
  • [23] PeNet : A feature excitation learning approach to advertisement click-through rate prediction
    Yin, Yunfei
    Ochieng, Nyambega David
    Sun, Jingqin
    Bao, Xianjian
    Wang, Zhuowei
    NEURAL NETWORKS, 2024, 172
  • [24] GAIN: A Gated Adaptive Feature Interaction Network for Click-Through Rate Prediction
    Liu, Yaoxun
    Ma, Liangli
    Wang, Muyuan
    SENSORS, 2022, 22 (19)
  • [25] Cognitive Evolutionary Search to Select Feature Interactions for Click-Through Rate Prediction
    Yu, Runlong
    Xu, Xiang
    Ye, Yuyang
    Liu, Qi
    Chen, Enhong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3151 - 3161
  • [26] Neural Statistics for Click-Through Rate Prediction
    Huang, Yanhua
    Wang, Hangyu
    Miao, Yiyun
    Xu, Ruiwen
    Zhang, Lei
    Zhang, Weinan
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1849 - 1853
  • [27] Open Benchmarking for Click-Through Rate Prediction
    Zhu, Jieming
    Liu, Jinyang
    Yang, Shuai
    Zhang, Qi
    He, Xiuqiang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2759 - 2769
  • [28] Feature-Interaction-Enhanced Sequential Transformer for Click-Through Rate Prediction
    Yuan, Quan
    Zhu, Ming
    Li, Yushi
    Liu, Haozhe
    Guo, Siao
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [29] CAN: Feature Co-Action Network for Click-Through Rate Prediction
    Bian, Weijie
    Wu, Kailun
    Ren, Lejian
    Pi, Qi
    Zhang, Yujing
    Xiao, Can
    Sheng, Xiang-Rong
    Zhu, Yong-Nan
    Chan, Zhangming
    Mou, Na
    Luo, Xinchen
    Xiang, Shiming
    Zhou, Guorui
    Zhu, Xiaoqiang
    Deng, Hongbo
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 57 - 65
  • [30] DAE: Distribution-Aware Embedding for Numerical Features in Click-Through Rate Prediction
    Shen, Bin
    Xu, Jingran
    Min, Xu
    Ke, Zeyu
    He, Yong
    Zhang, Liang
    Dong, Xin
    Mo, Linjian
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4279 - 4283