Feature embedding in click-through rate prediction

被引:0
|
作者
Pahor, Samo [1 ]
Kopic, Davorin [1 ]
Demsar, Jure [2 ]
机构
[1] Outbrain Slovenia, Dunajska Cesta 5, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
来源
ELEKTROTEHNISKI VESTNIK | 2023年 / 90卷 / 03期
关键词
real-time bidding; click-through rate prediction; feature embedding; feature transformation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We tackle the challenge of feature embedding for the purposes of improving the click-through rate prediction process. We select three models: logistic regression, factorization machines and deep factorization machines, as our baselines and propose five different feature embedding modules: embedding scaling, FM embedding, embedding encoding, NN embedding and the embedding reweighting module. The embedding modules act as a way to improve baseline model feature embeddings and are trained alongside the rest of the model parameters in an end-to-end manner. Each module is individually added to a baseline model to obtain a new augmented model. We test the predictive performance of our augmented models on a publicly accessible dataset used for benchmarking click-through rate prediction models. Our results show that several proposed embedding modules provide an important increase in predictive performance without a drastic increase in training time.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [1] Feature embedding in click-through rate prediction
    Pahor, Samo
    Kopič, Davorin
    Demšar, Jure
    Elektrotehniski Vestnik/Electrotechnical Review, 2023, 90 (03): : 75 - 89
  • [2] Embedding Normalization: Significance Preserving Feature Normalization for Click-Through Rate Prediction
    Yi, Joonyoung
    Kim, Beomsu
    Chang, Buru
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 75 - 84
  • [3] Self-residual Embedding for Click-Through Rate Prediction
    Sun, Jingqin
    Yin, Yunfei
    Huang, Faliang
    Zhou, Mingliang
    Hou, Leong U.
    WEB AND BIG DATA, APWEB-WAIM 2021, PT II, 2021, 12859 : 323 - 337
  • [4] Graph relation embedding network for click-through rate prediction
    Yixuan Wu
    Youpeng Hu
    Xin Xiong
    Xunkai Li
    Ronghui Guo
    Shuiguang Deng
    Knowledge and Information Systems, 2022, 64 : 2543 - 2564
  • [5] Graph relation embedding network for click-through rate prediction
    Wu, Yixuan
    Hu, Youpeng
    Xiong, Xin
    Li, Xunkai
    Guo, Ronghui
    Deng, Shuiguang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (09) : 2543 - 2564
  • [6] Hierarchical attention and feature projection for click-through rate prediction
    Jinjin Zhang
    Chengliang Zhong
    Shouxiang Fan
    Xiaodong Mu
    Zhen Ni
    Applied Intelligence, 2022, 52 : 8651 - 8663
  • [7] Feature refinement and attention enhancement for click-through rate prediction
    Li, Sumin
    Xie, Zhen
    Pan, Xiuqin
    COMPUTER JOURNAL, 2025,
  • [8] Hierarchical attention and feature projection for click-through rate prediction
    Zhang, Jinjin
    Zhong, Chengliang
    Fan, Shouxiang
    Mu, Xiaodong
    Ni, Zhen
    APPLIED INTELLIGENCE, 2022, 52 (08) : 8651 - 8663
  • [9] OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction
    Lyu, Fuyuan
    Tang, Xing
    Zhu, Hong
    Guo, Huifeng
    Zhang, Yingxue
    Tang, Ruiming
    Liu, Xue
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1399 - 1409
  • [10] HIEN: Hierarchical Intention Embedding Network for Click-Through Rate Prediction
    Zheng, Zuowu
    Zhang, Changwang
    Gao, Xiaofeng
    Chen, Guihai
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 322 - 331