Pairwise Application Log Classification

被引:0
|
作者
Stuike, Byron [1 ]
Amannejad, Yasaman [1 ]
机构
[1] Mt Royal Univ, Dept Math & Comp, Calgary, AB, Canada
关键词
application identification; pairwise classification; machine learning; big data applications;
D O I
10.1109/BigComp57234.2023.00078
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a method for labeling big data applications based on their execution logs. This method allows big data cluster operators to identify and label applications without relying on the application names assigned by cluster users. Our method relies on pairwise classification and does not require extensive training data. We have evaluated the pairwise classification technique with 13 big data applications. Our method works with high accuracy for new application types that were not observed during the model training. Our classifier achieves 83% accuracy.
引用
收藏
页码:349 / 350
页数:2
相关论文
共 50 条
  • [41] Efficient voting prediction for pairwise multilabel classification
    Mencia, Eneldo Loza
    Park, Sang-Hyeun
    Fuernkranz, Johannes
    NEUROCOMPUTING, 2010, 73 (7-9) : 1164 - 1176
  • [42] Functional classification of drugs by properties of their pairwise interactions
    Pamela Yeh
    Ariane I Tschumi
    Roy Kishony
    Nature Genetics, 2006, 38 : 489 - 494
  • [43] Classification algorithm based on pairwise comparison of features
    E. K. Kornoushenko
    Automation and Remote Control, 2017, 78 : 2062 - 2074
  • [44] Learn to Cluster Faces via Pairwise Classification
    Liu, Junfu
    Qiu, Di
    Yan, Pengfei
    Wei, Xiaolin
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3825 - 3833
  • [45] Classification Algorithm Based on Pairwise Comparison of Features
    Kornoushenko, E. K.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (11) : 2062 - 2074
  • [46] STRUCTURAL CONNECTOME VALIDATION USING PAIRWISE CLASSIFICATION
    Petrov, Dmitry
    Gutman, Boris
    Ivanov, Alexander
    Faskowitz, Joshua
    Jahanshad, Neda
    Belyaev, Mikhail
    Thompson, Paul
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 451 - 455
  • [47] Beyond Trees: Classification with Sparse Pairwise Dependencies
    Tenzer, Yaniv
    Moscovich, Amit
    Dorn, Mary Frances
    Nadler, Boaz
    Spiegelman, Clifford
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [48] An Algorithm for Ordinal Classification Based on Pairwise Comparison
    Yunli Yang
    Baiyu Chen
    Zhouwang Yang
    Journal of Classification, 2020, 37 : 158 - 179
  • [49] Functional classification of drugs by properties of their pairwise interactions
    Yeh, P
    Tschumi, AI
    Kishony, R
    NATURE GENETICS, 2006, 38 (04) : 489 - 494
  • [50] A pairwise class interaction framework for multilabel classification
    Arias, Jacinto
    Gámez, José A.
    Nielsen, Thomas D.
    Puerta, José M.
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8754 : 17 - 32