Hopf bifurcations by perturbing a class of reversible quadratic systems

被引:2
|
作者
Zhang, Huihui [1 ]
Xiong, Yanqin [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
关键词
Hopf bifurcation; Reversible system; Melnikov function; ABELIAN-INTEGRALS; LIMIT-CYCLES; PERIODIC-ORBITS; ALMOST-ALL; GENUS ONE; CENTERS; NUMBER; PERTURBATIONS; ZEROS;
D O I
10.1016/j.chaos.2023.113309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper first investigates the dynamical behavior of a class of reversible quadratic systems, providing all possible phase portraits on the plane. Then, we use generalized Melnikov function method to study the Hopf bifurcation of reversible quadratic systems under the perturbation of piecewise quadratic systems, finding 4 more limit cycles than the smooth case.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Discretizing dynamical systems with generalized Hopf bifurcations
    Paez Chavez, Joseph
    NUMERISCHE MATHEMATIK, 2011, 118 (02) : 229 - 246
  • [32] HOPF BIFURCATIONS IN NONAUTONOMOUS SYSTEMS AT POINTS OF RESONANCE
    CHENG, CQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1990, 33 (02): : 206 - 219
  • [33] On Hopf bifurcations of piecewise planar Hamiltonian systems
    Yang, Junmin
    Han, Maoan
    Huang, Wenzhang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (02) : 1026 - 1051
  • [34] HOPF BIFURCATIONS IN NONAUTONOMOUS SYSTEMS AT POINTS OF RESONANCE
    程崇庆
    Science China Mathematics, 1990, (02) : 206 - 219
  • [35] Hopf bifurcations in general systems of Brusselator type
    Li, Yan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 28 : 32 - 47
  • [36] DEGENERATE HOPF BIFURCATIONS IN POWER-SYSTEMS
    CHEN, RL
    VARAIYA, PP
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (07): : 818 - 824
  • [37] Discretizing dynamical systems with generalized Hopf bifurcations
    Joseph Páez Chávez
    Numerische Mathematik, 2011, 118 : 229 - 246
  • [38] HOPF BIFURCATIONS FOR NEAR-HAMILTONIAN SYSTEMS
    Han, Maoan
    Yang, Junmin
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (12): : 4117 - 4130
  • [39] Strong Resonances at Hopf Bifurcations in Control Systems
    P.-A. Bliman
    A. M. Krasnosel'skii
    D. I. Rachinskii
    Automation and Remote Control, 2001, 62 : 1783 - 1802
  • [40] LIMIT CYCLE BIFURCATIONS BY PERTURBING A KIND OF QUADRATIC HAMILTONIAN SYSTEM HAVING A HOMOCLINIC LOOP
    Xiong, Yanqin
    Zhao, Liqin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (11): : 4416 - 4431