Object semantic-guided graph attention feature fusion network for Siamese visual tracking

被引:3
|
作者
Zhang, Jianwei [1 ]
Miao, Mengen [1 ]
Zhang, Huanlong [2 ]
Wang, Jingchao [1 ]
Zhao, Yanchun [3 ]
Chen, Zhiwu [2 ]
Qiao, Jianwei [4 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Software Engn, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Zhengzhou 450002, Peoples R China
[3] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[4] Wolong Elect Nanyang Explos Proof Motor Grp, Nanyang 473000, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Siamese network; Semantic; -guided; Graph attention; ROBUST;
D O I
10.1016/j.jvcir.2022.103705
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The similarity matching between the template and the search area plays a key role in Siamese-based trackers. Most Siamese-based trackers adopt correlation operation to perform feature fusion on the template branch and search branch for similarity matching. However, the correlation operation directly uses the template feature to slide the window on the search area feature without distinguishing the discriminant part of the target and the background noise, which blurs the spatial information of the response feature. To address this issue, this work proposes a novel object semantic-guided graph attention feature fusion network that both removes background information and focuses on the discriminative part of the object. The proposed network effectively removes background noise by utilizing an adaptive template instead of the fixed-size template used by the correlation operation. The network also models the contextual semantic relations of the target and uses the resulting se-mantic relations to guide the feature fusion process in a part-based manner, thereby accurately highlighting the discriminative parts of the target. Therefore, the problem of blurring response feature caused by correlation operation is effectively resolved. Furthermore, we propose an object-aware prediction network to learn object -aware features for classification and regression task, which effectively improves the discriminative ability of the prediction network. Experiments on many challenging benchmarks like OTB-100, LaSOT, TColor-128, GOT -10k and VOT2019, show that our methods achieves excellent performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Siamese Feedback Network for Visual Object Tracking
    Gwon M.-G.
    Kim J.
    Um G.-M.
    Lee H.
    Seo J.
    Lim S.Y.
    Yang S.-J.
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (01): : 24 - 33
  • [32] SiamAtt: Siamese attention network for visual tracking
    Yang, Kai
    He, Zhenyu
    Zhou, Zikun
    Fan, Nana
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [33] Online Siamese Network for Visual Object Tracking
    Chang, Shuo
    Li, Wei
    Zhang, Yifan
    Feng, Zhiyong
    SENSORS, 2019, 19 (08)
  • [34] Semantic-Guided Attention Refinement Network for Salient Object Detection in Optical Remote Sensing Images
    Huang, Zhou
    Chen, Huaixin
    Liu, Biyuan
    Wang, Zhixi
    REMOTE SENSING, 2021, 13 (11)
  • [35] Visual Tracking Method Based on Siamese Network with Multi-Feature Fusion
    Li, Qingdang
    Xu, Rui
    Zhang, Mingyue
    Sun, Zhen
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2022, 56 (02) : 150 - 159
  • [36] Visual Tracking Method Based on Siamese Network with Multi-Feature Fusion
    Qingdang Li
    Xu, Rui
    Zhang, Mingyue
    Sun, Zhen
    Automatic Control and Computer Sciences, 2022, 56 (02): : 150 - 159
  • [37] End-to-end feature fusion Siamese network for adaptive visual tracking
    Guo, Dongyan
    Wang, Jun
    Zhao, Weixuan
    Cui, Ying
    Wang, Zhenhua
    Chen, Shengyong
    IET IMAGE PROCESSING, 2021, 15 (01) : 91 - 100
  • [38] SIAMESE FEATURE PYRAMID NETWORK FOR VISUAL TRACKING
    Chang, Shuo
    Zhang, Fan
    Huang, Sai
    Yao, Yuanyuan
    Zhao, Xiaotong
    Feng, Zhiyong
    2019 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS IN CHINA (ICCC WORKSHOPS), 2019, : 164 - 168
  • [39] Visual Tracking Method Based on Siamese Network with Multi-Feature Fusion
    Rui Qingdang Li
    Mingyue Xu
    Zhen Zhang
    Automatic Control and Computer Sciences, 2022, 56 : 150 - 159
  • [40] FLOW GUIDED SIAMESE NETWORK FOR VISUAL TRACKING
    Wang, Guokun
    Liu, Bin
    Li, Weihai
    Yu, Nenghai
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 231 - 235