Local characteristic decomposition based central-upwind scheme

被引:9
|
作者
Chertock, Alina [1 ]
Chu, Shaoshuai [2 ]
Herty, Michael [3 ]
Kurganov, Alexander [4 ,5 ]
Lukacova-Medvid'ova, Maria [6 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
[3] Rhein Westfal TH Aachen, Dept Math, D-52056 Aachen, Germany
[4] Southern Univ Sci & Technol, Dept Math, SUSTech Int Ctr Math, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China
[6] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
关键词
Local characteristic decomposition; Central-upwind schemes; Hyperbolic systems of conservative laws; Euler equations of gas dynamics; CENTRAL DIFFERENCE-SCHEMES; RIEMANN PROBLEM; TIME DISCRETIZATION; HYPERBOLIC SYSTEMS; WENO SCHEMES; RESOLUTION; COMPUTATION; FORMULATION; FLOW;
D O I
10.1016/j.jcp.2022.111718
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose novel less diffusive schemes for conservative one-and two-dimensional hyperbolic systems of nonlinear partial differential equations (PDEs). The main challenges in the development of accurate and robust numerical methods for the studied systems come from the complicated wave structures, such as shocks, rarefactions and contact discontinuities, arising even for smooth initial conditions. In order to reduce the diffusion in the original central-upwind schemes, we use a local characteristic decomposition procedure to develop a new class of central-upwind schemes. We apply the developed schemes to the one-and two-dimensional Euler equations of gas dynamics to illustrate the performance on a variety of examples. The obtained numerical results clearly demonstrate that the proposed new schemes outperform the original central-upwind schemes.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Third-order semi-discrete central-upwind scheme for hyperbolic conservation laws
    College of Automation, Northwestern Polytechnical University, Xi'an 710072, China
    Jisuan Lixue Xuebao, 2006, 2 (157-162):
  • [32] Fifth-order semi-discrete central-upwind scheme for hyperbolic conservation laws
    College of Science, Chang'an University, Xi'an 710064, China
    不详
    Jisuan Wuli, 2008, 1 (29-35):
  • [33] New Low-Dissipation Central-Upwind Schemes
    Kurganov, Alexander
    Xin, Ruixiao
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (02)
  • [34] Compressible simulations of bubble dynamics with central-upwind schemes
    Koukouvinis, Phoevos
    Gavaises, Manolis
    Georgoulas, Anastasios
    Marengo, Marco
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2016, 30 (02) : 129 - 140
  • [35] New Low-Dissipation Central-Upwind Schemes
    Alexander Kurganov
    Ruixiao Xin
    Journal of Scientific Computing, 2023, 96
  • [36] Compressible bubble dynamic simulations with central-upwind schemes
    City University London, Northampton Square, EC 1V 0HB, United Kingdom
    不详
    24044, Italy
    不详
    BN2 4GJ, United Kingdom
    J. Phys. Conf. Ser., 1
  • [37] Compressible bubble dynamic simulations with central-upwind schemes
    Koukouvinis, P.
    Gavaises, M.
    Georgoulas, A.
    Marengo, M.
    9TH INTERNATIONAL SYMPOSIUM ON CAVITATION (CAV2015), 2015, 656
  • [38] Central-Upwind Scheme on Triangular Grids for the Saint-Venant System of Shallow Water Equations
    Bryson, Steve
    Epshteyn, Yekaterina
    Kurganov, Alexander
    Petrova, Guergana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [39] An Efficient Adaptive Central-Upwind WENO-CU6 Numerical Scheme with a New Sensor
    Guo-Yan Zhao
    Ming-Bo Sun
    Yong Mei
    Liang Li
    Hong-Bo Wang
    Guang-Xin Li
    Yuan Liu
    Yong-Chao Sun
    Chang-Hai Liang
    Journal of Scientific Computing, 2019, 81 : 649 - 670
  • [40] A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation
    Ji Zhen
    Zhou Yu-Fen
    Hou Tian-Xiang
    CHINESE PHYSICS LETTERS, 2011, 28 (07)