An inexact primal-dual method with correction step for a saddle point problem in image debluring

被引:0
|
作者
Fang, Changjie [1 ,2 ]
Hu, Liliang [1 ,2 ]
Chen, Shenglan [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Intelligent Anal & Decis Complex Syst, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Primal-dual method; Inexact extended proximal operators; Convergence rate; Prediction and correction; Image deblurring; THRESHOLDING ALGORITHM; OPTIMIZATION; CONVERGENCE;
D O I
10.1007/s10898-022-01211-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present an inexact primal-dual method with correction step for a saddle point problem by introducing the notations of inexact extended proximal operators with symmetric positive definite matrix D. Relaxing requirement on primal-dual step sizes, we prove the convergence of the proposed method. We also establish the O(1/N) convergence rate of our method in the ergodic sense. Moreover, we apply our method to solve TV-L-1 image deblurring problems. Numerical simulation results illustrate the efficiency of our method.
引用
收藏
页码:965 / 988
页数:24
相关论文
共 50 条
  • [31] Primal-dual approach to inexact subgradient methods
    Au, K.T.
    Mathematical Programming, Series A, 1996, 72 (03):
  • [32] An Efficient Primal-Dual Method for the Obstacle Problem
    Dominique Zosso
    Braxton Osting
    Mandy(Mengqi) Xia
    Stanley J. Osher
    Journal of Scientific Computing, 2017, 73 : 416 - 437
  • [33] A Second Order Primal-Dual Dynamical System for a Convex-Concave Bilinear Saddle Point Problem
    He, Xin
    Hu, Rong
    Fang, Yaping
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (02):
  • [34] An Efficient Primal-Dual Method for the Obstacle Problem
    Zosso, Dominique
    Osting, Braxton
    Xia, Mandy
    Osher, Stanley J.
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) : 416 - 437
  • [35] A First-Order Primal-Dual Method for Saddle Point Optimization of PAPR Problem in MU-MIMO-OFDM Systems
    Singh, Davinder
    Sarin, R. K.
    RADIOENGINEERING, 2018, 27 (02) : 549 - 556
  • [36] A primal–dual prediction–correction algorithm for saddle point optimization
    Hongjin He
    Jitamitra Desai
    Kai Wang
    Journal of Global Optimization, 2016, 66 : 573 - 583
  • [37] Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems
    Zhu, Zhanxing
    Storkey, Amos J.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT I, 2015, 9284 : 645 - 658
  • [38] Solving saddle point problems: a landscape of primal-dual algorithm with larger stepsizes
    Fan Jiang
    Zhiyuan Zhang
    Hongjin He
    Journal of Global Optimization, 2023, 85 : 821 - 846
  • [39] Communication-Efficient Distributed Primal-Dual Algorithm for Saddle Point Problems
    Yu, Yaodong
    Liu, Sulin
    Pan, Sinno Jialin
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [40] APPROXIMATE FIRST-ORDER PRIMAL-DUAL ALGORITHMS FOR SADDLE POINT PROBLEMS
    Jiang, Fan
    Cai, Xingju
    Wu, Zhongming
    Han, Deren
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1227 - 1262