Dependence of Exciton Binding Energy on Bandgap of Organic Semiconductors

被引:26
|
作者
Sugie, Ai [1 ]
Nakano, Kyohei [2 ]
Tajima, Keisuke [2 ]
Osaka, Itaru [3 ]
Yoshida, Hiroyuki [1 ,4 ]
机构
[1] Chiba Univ, Grad Sch Engn, Chiba 2638522, Japan
[2] RIKEN, Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[3] Hiroshima Univ, Grad Sch Adv Sci & Engn, Appl Chem Program, Higashihiroshima, Hiroshima 7398527, Japan
[4] Chiba Univ, Mol Chiral Res Ctr, Chiba 2638522, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 50期
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
POLYMER SOLAR-CELLS; DONOR/ACCEPTOR INTERFACE; ELECTRONIC POLARIZATION; INVERSE-PHOTOEMISSION; MOLECULAR-CRYSTALS; PERFORMANCE; AFFINITIES; GENERATION; SOLIDS; FILMS;
D O I
10.1021/acs.jpclett.3c02863
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strongly bound excitons crucially affect the operation of organic optoelectronic devices. Nevertheless, precise experimental data on the exciton binding energy of organic semiconductors are lacking. In this study, we determine the exciton binding energy as the difference between the optical and transport bandgaps with a precision of 0.1 eV. In particular, electron affinities with a precision higher than 0.05 eV determined by low-energy inverse photoelectron spectroscopy allow us to determine the transport gap and the exciton binding energies with such high precision. Through a systematic comparison of a wide range of organic semiconductors, including 42 organic solar cell materials (15 nonfullerene acceptors, 4 fullerene acceptors, 13 low-bandgap polymers, 7 organic light-emitting diode materials, and 3 crystalline materials), we found that the exciton binding energy is one-quarter of the transport gap regardless of the materials. We interpret this unexpected relation from a hydrogen atom-like model, i.e., the quantized energy levels in a Coulomb potential between the positive and the negative charges.
引用
收藏
页码:11412 / 11420
页数:9
相关论文
共 50 条
  • [21] EXCITON BINDING TO NEUTRAL IMPURITIES IN SEMICONDUCTORS
    MUNSCHY, G
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1972, 53 (01): : 377 - &
  • [22] Exciton binding energies in chalcopyrite semiconductors
    Gil, Bernard
    Felbacq, Didier
    Chichibu, Shigefusa F.
    PHYSICAL REVIEW B, 2012, 85 (07)
  • [23] EXCITON BINDING ENERGIES IN ANISOTROPIC SEMICONDUCTORS
    ZIMMERMA.R
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1971, 46 (02): : K111 - &
  • [24] Exciton dynamics and spectra of organic semiconductors
    Cao, Jianshu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [25] Exciton dynamics at interfaces of organic semiconductors
    Muntwiler, Matthias
    Yang, Qingxin
    Zhu, X. -Y.
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2009, 174 (1-3) : 116 - 124
  • [26] Origin of the Variation of Exciton Binding Energy in Semiconductors (vol 110, 016402, 2013)
    Dvorak, Marc
    Wei, Su-Huai
    Wu, Zhigang
    PHYSICAL REVIEW LETTERS, 2013, 110 (16)
  • [27] Role of Halide Anion on Exciton Binding Energy and Disorder in Hybrid Perovskite Semiconductors
    Kumar, Aravindh
    Kumawat, Naresh K.
    Maheshwari, Parul
    Kabra, Dinesh
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [28] Exciton binding energy limitations in organic materials and potentials for improvements
    Kraner, Stefan
    Scholz, Reinhard
    Mueller, Eric
    Knupfer, Martin
    Koerner, Christian
    Leo, Karl
    ORGANIC PHOTOVOLTAICS XVI, 2015, 9567
  • [29] Low Bandgap Organic Semiconductors for Photovoltaic Applications
    Afaq, Adil
    Pathak, Dinesh
    Aamir, Muhammad
    Aziz, Shahid
    Butt, Zakia
    Akhtar, Javeed
    Akhtar, Tashfeen
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2024, 23 (05)
  • [30] Wide bandgap semiconductors: Blue-green lasers and exciton physics
    Nurmikko, A
    Gunshor, RL
    PHYSICA SCRIPTA, 1996, T68 : 72 - 77