Dependence of Exciton Binding Energy on Bandgap of Organic Semiconductors

被引:26
|
作者
Sugie, Ai [1 ]
Nakano, Kyohei [2 ]
Tajima, Keisuke [2 ]
Osaka, Itaru [3 ]
Yoshida, Hiroyuki [1 ,4 ]
机构
[1] Chiba Univ, Grad Sch Engn, Chiba 2638522, Japan
[2] RIKEN, Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[3] Hiroshima Univ, Grad Sch Adv Sci & Engn, Appl Chem Program, Higashihiroshima, Hiroshima 7398527, Japan
[4] Chiba Univ, Mol Chiral Res Ctr, Chiba 2638522, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 50期
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
POLYMER SOLAR-CELLS; DONOR/ACCEPTOR INTERFACE; ELECTRONIC POLARIZATION; INVERSE-PHOTOEMISSION; MOLECULAR-CRYSTALS; PERFORMANCE; AFFINITIES; GENERATION; SOLIDS; FILMS;
D O I
10.1021/acs.jpclett.3c02863
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strongly bound excitons crucially affect the operation of organic optoelectronic devices. Nevertheless, precise experimental data on the exciton binding energy of organic semiconductors are lacking. In this study, we determine the exciton binding energy as the difference between the optical and transport bandgaps with a precision of 0.1 eV. In particular, electron affinities with a precision higher than 0.05 eV determined by low-energy inverse photoelectron spectroscopy allow us to determine the transport gap and the exciton binding energies with such high precision. Through a systematic comparison of a wide range of organic semiconductors, including 42 organic solar cell materials (15 nonfullerene acceptors, 4 fullerene acceptors, 13 low-bandgap polymers, 7 organic light-emitting diode materials, and 3 crystalline materials), we found that the exciton binding energy is one-quarter of the transport gap regardless of the materials. We interpret this unexpected relation from a hydrogen atom-like model, i.e., the quantized energy levels in a Coulomb potential between the positive and the negative charges.
引用
收藏
页码:11412 / 11420
页数:9
相关论文
共 50 条
  • [1] Exciton binding energies in organic semiconductors
    M. Knupfer
    Applied Physics A, 2003, 77 : 623 - 626
  • [2] Exciton binding energies in organic semiconductors
    Knupfer, M
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 77 (05): : 623 - 626
  • [3] Density dependence of the exciton energy in semiconductors
    Manzke, G
    Peng, QY
    Henneberger, K
    Neukirch, U
    Hauke, K
    Wundke, K
    Gutowski, J
    Hommel, D
    PHYSICAL REVIEW LETTERS, 1998, 80 (22) : 4943 - 4946
  • [4] Reduced exciton binding energy in organic semiconductors: Tailoring the Coulomb interaction
    Engel, Miriam
    Kunze, Frederik
    Lupascu, Doru C.
    Benson, Niels
    Schmechel, Roland
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2012, 6 (02): : 68 - 70
  • [5] Origin of the Variation of Exciton Binding Energy in Semiconductors
    Dvorak, Marc
    Wei, Su-Huai
    Wu, Zhigang
    PHYSICAL REVIEW LETTERS, 2013, 110 (01)
  • [6] DEPENDENCE OF PHOTOCURRENT IN ORGANIC SEMICONDUCTORS AND INSULATORS ON POTENTIAL IN EXCITON THEORY
    MYAMLIN, VA
    SOVIET ELECTROCHEMISTRY, 1975, 11 (01): : 168 - 171
  • [7] BINDING-ENERGY OF EXCITON COMPLEXES IN ANISOTROPIC SEMICONDUCTORS
    BEDNAREK, S
    ADAMOWSKI, J
    SUFFCZYNSKI, M
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (22): : 4515 - 4522
  • [8] MULTIPARTICLE EXCITON COMPLEXES IN SEMICONDUCTORS WITH A LARGE EXCITON BINDING-ENERGY IN (ZNO)
    LITOVCHENKO, VG
    BABENTSOV, VN
    KORBUTYAK, DV
    IVANIICHUK, MT
    JETP LETTERS, 1979, 30 (09) : 544 - 548
  • [9] Exciton tunneling in wide-bandgap semiconductors
    Ten, S
    Henneberger, F
    Rabe, M
    Peyghambarian, N
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES IV, 1996, 2693 : 315 - 321
  • [10] Dependence of exciton binding energy on magnetic field in parabolic quantum well made of diluted magnetic semiconductors
    Kyrychenko, F
    Kossut, J
    ACTA PHYSICA POLONICA A, 1998, 94 (03) : 406 - 410