Alzheimer's Disease Detection Using Ensemble Learning and Artificial Neural Networks

被引:3
|
作者
Bandyopadhyay, Ahana [1 ]
Ghosh, Sourodip [1 ]
Bose, Moinak [1 ]
Singh, Arun [3 ]
Othmani, Alice [2 ]
Santosh, K. C. [4 ]
机构
[1] Appl AI Res Lab, Vermillion, SD 57069 USA
[2] Univ Paris Est, LISSI, UPEC, F-94400 Vitry Sur Seine, France
[3] Univ South Dakota, Basic Biomed Sci, Vermillion, SD 57069 USA
[4] Univ South Dakota, Dept Comp Sci, Appl AI Res Lab, Vermillion, SD 57069 USA
关键词
Alzheimer's disease detection; Machine learning; ANN; Ensemble learning; BRAIN ATROPHY; MRI; PATTERNS;
D O I
10.1007/978-3-031-23599-3_2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an ensemble method using machine learning classification algorithms and an artificial neural network-based scheme using the popular and widely used open access series of imaging studies (OASIS) dataset for Alzheimer's disease (AD) detection. The proposed work performs an in-depth feature examination and a training-test split in a 70 : 30 ratio on the dataset and applies 8 different ML algorithms. The AD detection outcome is obtained using two procedures, first by an ensemble approach applied to different machine learning algorithms, and secondly by using an artificial neural network (ANN). The use of ANN achieves an overall test accuracy of 0.9196 whereas two ensemble techniques, namely gradient boosting and voting classifier achieve an overall test accuracy of 0.857 and 0.8304. The precision and sensitivity scores demonstrate the superior detection performance of the ANN over the ensemble method on ML algorithms.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 50 条
  • [41] Using artificial neural networks in clinical neuropsychology: High performance in mild cognitive impairment and Alzheimer's disease
    Quintana, Maria
    Guardia, Joan
    Sanchez-Benavides, Gonzalo
    Aguilar, Miguel
    Luis Molinuevo, Jose
    Robles, Alfredo
    Sagrario Barquero, Maria
    Antunez, Carmen
    Martinez-Parra, Carlos
    Frank-Garcia, Anna
    Fernandez, Manuel
    Blesa, Rafael
    Pena-Casanova, Jordi
    JOURNAL OF CLINICAL AND EXPERIMENTAL NEUROPSYCHOLOGY, 2012, 34 (02) : 195 - 208
  • [42] Study on Discrimination of Alzheimer's Disease States Using an Ensemble Neural Network's Model
    Eom, Junsik
    Jang, Hanbyol
    Kim, Sewon
    Jang, Jinseong
    Hwang, Dosik
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [43] Artificial grammar learning in Alzheimer's disease
    Reber, Paul J.
    Martinez, Lucy A.
    Weintraub, Sandra
    COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE, 2003, 3 (02) : 145 - 153
  • [44] The use of artificial neural networks to diagnose Alzheimer's disease from brain images
    Fouladi, Saman
    Safaei, Ali A.
    Arshad, Noreen Izza
    Ebadi, M. J.
    Ahmadian, Ali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37681 - 37721
  • [45] The use of artificial neural networks to diagnose Alzheimer’s disease from brain images
    Saman Fouladi
    Ali A. Safaei
    Noreen Izza Arshad
    M. J. Ebadi
    Ali Ahmadian
    Multimedia Tools and Applications, 2022, 81 : 37681 - 37721
  • [46] Artificial grammar learning in Alzheimer’s disease
    Paul J. Reber
    Lucy A. Martinez
    Sandra Weintraub
    Cognitive, Affective, & Behavioral Neuroscience, 2003, 3 : 145 - 153
  • [47] Early Alzheimer’s Disease Detection Using Deep Learning
    Lokesh K.
    Challa N.P.
    Satwik A.S.
    Kiran J.C.
    Rao N.K.
    Naseeba B.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [48] Optimal Load Shedding Using an Ensemble of Artificial Neural Networks
    FaizanTahir, Muhammad
    Teheeb-Ul-Hassan, Hafiz
    Mehmood, Kashif
    Qamar, Hafiz Ghulam Murtaza
    Rashid, Umair
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2016, 7 (02) : 39 - 46
  • [49] Using neural networks in the identification of signatures for prediction of Alzheimer's Disease
    Dantas, Lara
    Valenca, Meuser
    2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, : 238 - 242
  • [50] Evolutionary ensemble of diverse artificial neural networks using speciation
    Kim, Kyung-Joong
    Cho, Sung-Bae
    NEUROCOMPUTING, 2008, 71 (7-9) : 1604 - 1618