A new approach to prediction riboflavin absorbance using imprinted polymer and ensemble machine learning algorithms

被引:3
|
作者
Yarahmadi, Bita [1 ]
Hashemianzadeh, Seyed Majid [2 ]
Hosseini, Seyed Mohammad -Reza Milani [1 ]
机构
[1] Iran Univ Sci & Technol, Dept Chem, Real Samples Anal Lab, Tehran, Iran
[2] Iran Univ Sci & Technol, Dept Chem, Mol Simulat Res Lab, Tehran, Iran
关键词
Riboflavin; Machine learning; Ensemble algorithm; Molecularly imprinted polymer; QUANTUM DOTS; SENSOR; EXTRACTION;
D O I
10.1016/j.heliyon.2023.e17953
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecularly imprinted polymer (MIP) is useful for measuring the amount of riboflavin (vitamin B2), in various samples using UV/Vis instruments. The practical optimization of the MIP synthesis conditions has a number of drawbacks, like the need to spend money, the need to spend time, the use of the compounds that cause contamination, needing laboratory equipment and tools. Using machine learning (ML) to predict the amount of riboflavin absorbance is a creative solution to overcome the problems and shortcomings of optimizing polymer synthesis conditions. In fact, by using the model without needing real work in the laboratory, the optimum laboratory conditions are determined, and as a result the maximized absorption of the riboflavin is obtained. In this paper, MIP was synthesized for selective extraction of the riboflavin, and UV/Vis spectrophotometry was used to quantitatively measure riboflavin absorbance. Various factors affect the performance of the polymer. The effect of six important factors, including the molar ratio of the template, the molar ratio of monomer, the molar ratio of cross-linker, loading time, stirring rate, and pH, were investigated. Then, using ensemble ML algorithms, like gradient boosting (GB), extra trees (ET), random forest (RF), and Ada boost (Ada) algorithms, an accurate model was created to predict the riboflavin absorption. Also, the mutual information feature selection method was used to determine the important features. The results of using feature selection method was shown that variables such as the molar ratio of the template, the molar ratio of the monomer, and the molar ratio of the cross-linker had a high effect on riboflavin absorbance. The GB and Ada boost algorithms performed better than ET and RF algorithms. After tuning the nestimator hyper parameter (n-estimator = 300), the GB algorithm was shown an excellent performance in predicting the absorbance of riboflavin and the maximum R2-scoring of the model was obtained at 0.965995, the minimum of the mean absolute error (MAE), and mean square error (MSE) of the model respectively were obtained -0.003711 and -0.000078. Therefore, by using the proposed model, it is possible to predict riboflavin absorbance theoretically, and with high accuracy by changing the inputs of model, and using the model instead of working in the lab saves time, money, chemical compounds, and lab ware.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Ensemble of machine learning algorithms using the stacked generalization approach to estimate the warfarin dose
    Ma, Zhiyuan
    Wang, Ping
    Gao, Zehui
    Wang, Ruobing
    Khalighi, Koroush
    PLOS ONE, 2018, 13 (10):
  • [22] Movie Rating Prediction using Ensemble Learning Algorithms
    Mhowwala, Zahabiya
    Sulthana, A. Razia
    Shetty, Sujala D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (08) : 383 - 388
  • [23] A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm
    Basaran, Kivanc
    Ozcift, Akin
    Kilinc, Deniz
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (08) : 7159 - 7171
  • [24] A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm
    Kivanc Basaran
    Akın Özçift
    Deniz Kılınç
    Arabian Journal for Science and Engineering, 2019, 44 : 7159 - 7171
  • [25] Diabetes Prediction using Machine Learning Algorithms
    Mujumdar, Aishwarya
    Vaidehi, V.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 292 - 299
  • [26] Stock Prediction Using Machine Learning Algorithms
    Kohli, Pahul Preet Singh
    Zargar, Seerat
    Arora, Shriya
    Gupta, Parimal
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 405 - 414
  • [27] Obesity Prediction Using Ensemble Machine Learning Approaches
    Jindal, Kapil
    Baliyan, Niyati
    Rana, Prashant Singh
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 355 - 362
  • [28] Oil Price Prediction Using Ensemble Machine Learning
    Gabralla, Lubna A.
    Jammazi, Rania
    Abraham, Ajith
    2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONICS ENGINEERING (ICCEEE), 2013, : 674 - 679
  • [29] Pitch Accent Prediction Using Ensemble Machine Learning
    Zhang, Aiying
    Ni, Chongjia
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 444 - 447
  • [30] Optimal Spatial Prediction Using Ensemble Machine Learning
    Davies, Molly Margaret
    van der Laan, Mark J.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (01): : 179 - 201