We introduce a Yamabe-type flow � partial differential g partial differential t = (rm & phi; - Rm & phi; )g partial differential & phi; partial differential t = m & phi; = 0 on partial differential M 2 (Rm & phi; - rm & phi; ) in M and Hmon a smooth metric measure space with boundary (M, g, vmdVg, vmdAg, m), where Rm & phi; is the associated weighted scalar curvature, rm & phi; is the average of the weighted scalar curvature, and H & phi;m is the weighted mean curvature. We prove the long-time existence and convergence of this flow.
机构:
Sogang Univ, Dept Math, Seoul 04107, South Korea
Korea Inst Adv Study, Hoegiro 85, Seoul 02455, South KoreaSogang Univ, Dept Math, Seoul 04107, South Korea
Ho, Pak Tung
论文数: 引用数:
h-index:
机构:
Lee, Junyeop
Shin, Jinwoo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Hoegiro 85, Seoul 02455, South KoreaSogang Univ, Dept Math, Seoul 04107, South Korea
机构:
Leibniz Univ Hannover, Inst Differentialgeometrie, D-30167 Hannover, GermanyNantes Univ, Lab Math Jean Leray, CNRS, LMJL,UMR 6629, Nantes F-44000, France
Lye, Jorgen Olsen
Vertman, Boris
论文数: 0引用数: 0
h-index: 0
机构:
Carl von Ossietzky Univ Oldenburg, Math Inst, D-26129 Oldenburg, GermanyNantes Univ, Lab Math Jean Leray, CNRS, LMJL,UMR 6629, Nantes F-44000, France