A nonlinear fractional partial integro-differential equation with nonlocal initial value conditions

被引:1
|
作者
Li, Chenkuan [1 ]
Saadati, Reza [2 ]
O'Regan, Donal [3 ]
Mesiar, Radko [4 ,5 ]
Hrytsenko, Andrii [1 ]
机构
[1] Brandon Univ, Dept Math & Comp Sci, Brandon, MB, Canada
[2] Iran Univ Sci & Technol, Sch Math, Tehran 1311416846, Iran
[3] Univ Galway, Sch Math & Stat Sci, Galway, Ireland
[4] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava, Slovakia
[5] Czech Acad Sci, Inst Informat Theory & Automat, Prague, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
Babenko's approach; Banach's contractive principle; multivariate Mittag-Leffler function; nonlinear partial integro-differential equation; PARTIAL-DIFFERENTIAL-EQUATIONS;
D O I
10.1002/mma.9486
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study a new nonlinear partial integro-differential equation with nonlocal initial value conditions and investigate the solutions of this equation. By considering an equivalent implicit integral equation via series, we prove the uniqueness of solutions of the equation by Babenko's approach, Banach's contraction principle, and the multivariable Mittag-Leffler function. We also demonstrate the application of our key theorem with an illustrative example.
引用
收藏
页码:17010 / 17019
页数:10
相关论文
共 50 条
  • [21] On an Integro-Differential Fractional Nonlinear Volterra–Caputo Equation
    S. Guemar
    H. Guebbai
    S. Lemita
    Numerical Analysis and Applications, 2021, 14 : 316 - 334
  • [22] Controllability of fractional integro-differential evolution equations with nonlocal conditions
    Liang, Jin
    Yang, He
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 20 - 29
  • [23] On hybrid Caputo fractional integro-differential inclusions with nonlocal conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4235 - 4246
  • [24] Solution of Nonlinear Fractional Stochastic Integro-Differential Equation
    Ahmed, Hamdy M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (02) : 105 - 113
  • [25] Nonlocal Boundary Value Problem for a Nonlinear Fredholm Integro-Differential Equation with Degenerate Kernel
    T. K. Yuldashev
    Differential Equations, 2018, 54 : 1646 - 1653
  • [26] Nonlocal Boundary Value Problem for a Nonlinear Fredholm Integro-Differential Equation with Degenerate Kernel
    Yuldashev, T. K.
    DIFFERENTIAL EQUATIONS, 2018, 54 (12) : 1646 - 1653
  • [27] On a class of retarded integro-differential equations with nonlocal initial conditions
    Wang, Rong-Nian
    Chen, De-Han
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) : 3700 - 3709
  • [28] Analysis of a Fractional-Order Quadratic Functional Integro-Differential Equation with Nonlocal Fractional-Order Integro-Differential Condition
    El-Sayed, Ahmed M. A.
    Alhamali, Antisar A. A.
    Hamdallah, Eman M. A.
    AXIOMS, 2023, 12 (08)
  • [29] A finite difference scheme for the nonlinear time-fractional partial integro-differential equation
    Guo, Jing
    Xu, Da
    Qiu, Wenlin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3392 - 3412
  • [30] Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions
    Sudsutad, Weerawat
    Thaiprayoon, Chatthai
    Ntouyas, Sotiris K.
    AIMS MATHEMATICS, 2021, 6 (04): : 4119 - 4141