Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks

被引:23
|
作者
Rajabi, Mohammad Mahdi [1 ]
Komeilian, Pooya [2 ]
Wan, Xi [3 ]
Farmani, Raziyeh [3 ]
机构
[1] Tarbiat Modares Univ, Civil & Environm Engn Fac, POB 14115-397, Tehran, Iran
[2] Sharif Univ Technol, Dept Civil Engn, Tehran, Iran
[3] Univ Exeter, Ctr Water Syst, Dept Engn, Exeter EX4 4QF, Devon, England
关键词
Leak; Anomaly detection; Generative adversarial networks; Image-to-image translation; Structural similarity index; Water Distribution; DISTRIBUTION-SYSTEMS; ANOMALY DETECTION; BURST DETECTION; ALGORITHM;
D O I
10.1016/j.watres.2023.120012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper explores the use of 'conditional convolutional generative adversarial networks' (CDCGAN) for image -based leak detection and localization (LD&L) in water distribution networks (WDNs). The method employs pressure measurements and is based on four pillars: (1) hydraulic model-based generation of leak-free training data by taking into account the demand uncertainty, (2) conversion of hydraulic model input demand-output pressure pairs into images using kriging interpolation, (3) training of a CDCGAN model for image-to-image translation, and (4) using the structural similarity (SSIM) index for LD&L. SSIM, computed over the entire pressure distribution image is used for leak detection, and a local estimate of SSIM is employed for leak local-ization. The CDCGAN model employed in this paper is based on the pix2pix architecture. The effectiveness of the proposed methodology is demonstrated on leakage datasets under various scenarios. Results show that the method has an accuracy of approximately 70% for real-time leak detection. The proposed method is well-suited for real-time applications due to the low computational cost of CDCGAN predictions compared to WDN hydraulic models, is robust in presence of uncertainty due to the nature of generative adversarial networks, and scales well to large and variable-sized monitoring data due to the use of an image-based approach.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks
    Fujioka, Tomoyuki
    Mori, Mio
    Kubota, Kazunori
    Kikuchi, Yuka
    Katsuta, Leona
    Adachi, Mio
    Oda, Goshi
    Nakagawa, Tsuyoshi
    Kitazume, Yoshio
    Tateishi, Ukihide
    DIAGNOSTICS, 2019, 9 (04)
  • [42] Conditional Independence Testing using Generative Adversarial Networks
    Bellot, Alexis
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [43] Using Generative Adversarial Networks and Transfer Learning for Breast Cancer Detection by Convolutional Neural Networks
    Guan, Shuyue
    Loew, Murray
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [44] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133
  • [45] Clustering Using Conditional Generative Adversarial Networks (cGANs)
    Ruzicka, Marek
    Dopiriak, Matus
    2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,
  • [46] Phase Retrieval Using Conditional Generative Adversarial Networks
    Uelwer, Tobias
    Oberstrass, Alexander
    Harmeling, Stefan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 731 - 738
  • [47] Distant Pedestrian Detection in the Wild using Single Shot Detector with Deep Convolutional Generative Adversarial Networks
    Dinakaran, Ranjith
    Easom, Philip
    Zhang, Li
    Bouridane, Ahmed
    Jiang, Richard
    Edirisinghe, Eran
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [48] Spectrum sensing based on deep convolutional generative adversarial networks
    Liu, Zheng
    Jing, Xiaojun
    Zhang, Ronghui
    Mu, Junsheng
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 796 - 801
  • [49] Generating Traffic Scene with Deep Convolutional Generative Adversarial Networks
    Zhao, Danchen
    Weng, Jingkun
    Liu, Yuehu
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 6612 - 6617
  • [50] Conditional Generative Adversarial Capsule Networks
    Kong R.
    Huang G.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (01): : 94 - 107