Lightweight brain MR image super-resolution using 3D convolution

被引:3
|
作者
Kim, Young Beom [1 ]
Van Le, The [2 ]
Lee, Jin Young [2 ]
机构
[1] Samsung Elect, Seoul, South Korea
[2] Sejong Univ, Dept Intelligent Mechatron Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Brain MR image; Deep learning; Magnetic resonance imaging (MRI); Super-resolution; 3D convolution;
D O I
10.1007/s11042-023-15969-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Magnetic resonance imaging (MRI) plays a very important role in a medical domain, such as image guided diagnostics and therapeutics. In particular, high resolution brain MRI has a great potential for preclinical and clinical procedures, because it is non-invasive imaging and shows a high level of anatomical detail. However, the high resolution MRI faces a number of challenges, such as long scan time, high magnetic field strength, and low signal to noise ratio. To solve these issues, deep learning based super-resolution networks, which provide high performance in various fields, can be employed in MRI. Since the super-resolution networks have been mainly developed to reconstruct high quality color images by using many parameters, they cannot be directly applied into MR scanners. Hence, this paper evaluates conventional networks with brain MR images, and then proposes a lightweight network employing 3D convolution, which consists of extraction, compression, and reconstruction parts. Experimental results show that the proposed network is very efficient, in terms of reconstruction quality and network complexity.
引用
收藏
页码:8785 / 8795
页数:11
相关论文
共 50 条
  • [11] Lightweight image super-resolution network based on extended convolution mixer
    Gendy, Garas
    Sabor, Nabil
    He, Guanghui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [12] Lightweight image super-resolution with feature cheap convolution and attention mechanism
    Yang, Xin
    Li, Hengrui
    Li, Xiaochuan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (06): : 3977 - 3992
  • [13] Lightweight image super-resolution with feature cheap convolution and attention mechanism
    Xin Yang
    Hengrui Li
    Xiaochuan Li
    Cluster Computing, 2022, 25 : 3977 - 3992
  • [14] Lightweight Single Image Super-Resolution by Channel Split Residual Convolution
    Liu, Buzhong
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2022, 18 (01): : 12 - 25
  • [15] Enhancing super-resolution reconstructed image quality in 3D MR images using simulated annealing
    Rahman, Sami Ur
    Vateva, Tsvetoslava
    Wesarg, Stefan
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [16] Exploring the Relationship Between 2D/3D Convolution for Hyperspectral Image Super-Resolution
    Li, Qiang
    Wang, Qi
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8693 - 8703
  • [17] Edge Assisted Asymmetric Convolution Network for MR Image Super-Resolution
    Wang, Wanliang
    Xing, Fangsen
    Chen, Jiacheng
    Tu, Hangyao
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 66 - 78
  • [18] Lightweight image super-resolution network using involution
    Liang, Jiu
    Zhang, Yu
    Xue, Jiangbo
    Hu, Yanda
    MACHINE VISION AND APPLICATIONS, 2022, 33 (05)
  • [19] Lightweight image super-resolution network using involution
    Jiu Liang
    Yu Zhang
    Jiangbo Xue
    Yu Zhang
    Yanda Hu
    Machine Vision and Applications, 2022, 33
  • [20] On Single-Image Super-Resolution in 3D Brain Magnetic Resonance Imaging
    Bazzi, Farah
    Mescam, Muriel
    Basarab, Adrian
    Kouame, Denis
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2840 - 2843