Microwave solvothermal synthesis of Component-Tunable High-Entropy oxides as High-Efficient and stable electrocatalysts for oxygen evolution reaction

被引:43
|
作者
Wang, Dan [1 ,2 ,3 ,4 ,5 ]
Duan, Chanqin [1 ,2 ]
He, Huan [1 ,2 ]
Wang, Zhiyuan [1 ,2 ,3 ]
Zheng, Runguo [1 ,2 ,3 ]
Sun, Hongyu [2 ]
Liu, Yanguo [1 ,2 ,3 ]
Liu, Chunli [4 ,5 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Peoples R China
[3] Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao, Peoples R China
[4] Hankuk Univ Foreign Studies, Dept Phys, Yongin 17035, South Korea
[5] Hankuk Univ Foreign Studies, Oxide Res Ctr, Yongin 17035, South Korea
基金
中国国家自然科学基金;
关键词
High entropy oxide; Oxygen evolution reaction; Electrocatalyst; Microwave solvothermal; Catalytic activity;
D O I
10.1016/j.jcis.2023.05.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition-metal-based high-entropy oxides (HEOs) are appealing electrocatalysts for oxygen evolution reaction (OER) due to their unique structure, variable composition and electronic structure, outstanding electrocatalytic activity and stability. Herein, we propose a scalable high-efficiency microwave solvothermal strategy to fabricate HEO nano-catalysts with five earth-abundant metal elements (Fe, Co, Ni, Cr, and Mn) and tailor the component ratio to enhance the catalytic performance. (FeCoNi2CrMn)3O4 with a double Ni content exhibits the best electrocatalytic performance for OER, namely low overpotential (260 mV@10 mA cm-2), small Tafel slope and superb long-term durability without obvious potential change after 95 h in 1 M KOH. The extraordinary per-formance of (FeCoNi2CrMn)3O4 can be attributed to the large active surface area profiting from the nano structure, the optimized surface electronic state with high conductivity and suitable adsorption to intermediate benefitting from ingenious multiple-element synergistic effects, and the inherent structural stability of the high -entropy system. In addition, the obvious pH value dependable character and TMA+ inhibition phenomenon reveal that the lattice oxygen mediated mechanism (LOM) work together with adsorbate evolution mechanism (AEM) in the catalytic process of OER with the HEO catalyst. This strategy provides a new approach for the rapid synthesis of high-entropy oxide and inspires more rational designs of high-efficient electrocatalysts.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条
  • [31] High-entropy FeCoNiCuAlV sulfide as an efficient and reliable electrocatalyst for oxygen evolution reaction
    Zhao, Yao
    You, Junhua
    Wang, Zhaoyu
    Liu, Guangyi
    Huang, Xiaojuan
    Duan, Mingyi
    Zhang, Hangzhou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 599 - 605
  • [32] A highly efficient high-entropy metal hydroxymethylate electrocatalyst for oxygen evolution reaction
    Jiang, Qi
    Lu, Ruihu
    Gu, Junfeng
    Zhang, Long
    Liu, Kailong
    Huang, Mengyan
    Liu, Peng
    Zuo, Shiyu
    Wang, Yilong
    Zhao, Yan
    Ma, Peiyan
    Fu, Zhengyi
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [33] High-entropy alloy catalysts of FeCoNiCuMo/C with high stability for efficient oxygen evolution reaction
    Ma, Jiangtao
    Zhu, Yujun
    Huang, Kai
    Wang, Peng
    Liu, Dinghua
    Zhao, Yupei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 997
  • [34] A high-entropy phosphate catalyst for oxygen evolution reaction
    Qiao, Haiyu
    Wang, Xizheng
    Dong, Qi
    Zheng, Hongkui
    Chen, Gang
    Hong, Min
    Yang, Chun-Peng
    Wu, Meiling
    He, Kai
    Hu, Liangbing
    NANO ENERGY, 2021, 86
  • [35] Nonprecious High-Entropy Chalcogenide Glasses-Based Electrocatalysts for Efficient and Stable Acidic Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis
    Jo, Seunghwan
    Kim, Min-Cheol
    Lee, Keon Beom
    Choi, Hyeonggeun
    Zhang, Liting
    Sohn, Jung Inn
    ADVANCED ENERGY MATERIALS, 2023, 13 (35)
  • [36] High-Entropy Perovskite Oxides as a Family of Electrocatalysts for Efficient and Selective Nitrogen Oxidation
    Zheng, Hui
    Liu, Yunxia
    Ma, Ziwei
    Debroye, Elke
    Ye, Jinyu
    Zhang, Longsheng
    Liu, Tianxi
    ACS NANO, 2024, : 17642 - 17650
  • [37] Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
    Schweidler, Simon
    Tang, Yushu
    Lin, Ling
    Karkera, Guruprakash
    Alsawaf, Alaa
    Bernadet, Lucile
    Breitung, Ben
    Hahn, Horst
    Fichtner, Maximilian
    Tarancon, Albert
    Botros, Miriam
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [38] Recent Progress in High-Entropy Alloy Electrocatalysts for Hydrogen Evolution Reaction
    Wang, Qian
    Xie, Jiacheng
    Qin, Yao
    Kong, Yafen
    Zhou, Shunxin
    Li, Qingyi
    Sun, Qian
    Chen, Bo
    Xie, Peng
    Wei, Zengxi
    Zhao, Shuangliang
    ADVANCED MATERIALS INTERFACES, 2024, 11 (14)
  • [39] High-Entropy Ruthenium-Based Oxides with Rich Grain Boundaries for Efficient Oxygen Evolution
    Che, Youcai
    Zhang, Xiuxiu
    Bo, Shuowen
    An, Qizheng
    Zhang, Jing
    Li, Baojie
    Yang, Chenyu
    Zhou, Wanlin
    Cheng, Weiren
    Liu, Qinghua
    ACS MATERIALS LETTERS, 2024, 6 (09): : 4142 - 4148
  • [40] High-entropy heterostructures modulated by oxyphilic transition metals for efficient oxygen evolution reaction
    Guan, Wenqing
    Zhang, Chengxu
    Zhang, Yue
    Feng, Yuebin
    Mei, Yunjie
    Qi, Qianglong
    Song, Yinghang
    Hu, Jue
    NANO ENERGY, 2025, 134