Canny Edge Detection on GPU using CUDA

被引:3
|
作者
Horvath, Matthew, Jr. [1 ]
Bowers, Michael [1 ]
Alawneh, Shadi [1 ]
机构
[1] Oakland Univ, Elect & Comp Engn Dept, Rochester, MI 48063 USA
关键词
CUDA; Kernel; Compute; Edge Detection; Parallelism; Shared Memory; Tiling; Real-Time;
D O I
10.1109/CCWC57344.2023.10099273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Edge detection is a crucial step in many of today's computer vision applications. Canny edge detection in particular involves several steps to achieve realtime results. Many systems currently deployed leverage the compute capability that a graphics processing unit ( GPU) can achieve. This paper covers the implementation and testing of a Canny edge detection algorithm using CUDA C. The results cover a comparison of the naive implementation in sequential C, a parallelized implementation using OneAPI Threading Building Blocks (TBB), and a tiled, shared memory approach using CUDA C. A comparison between the NVIDIA GTX 1060 and NVIDIA RTX 3090 are also performed. The CUDA C implementation shows an improvement of up to 100 times that over the naive sequential implementation for an RGB image at 4k resolution, and an improvement of 10 times when compared to the TBB approach. Additionally, the RTX 3090 showed roughly a speed up of 1.5 times that of the GTX 1060, demonstrating the advances made between the generations of GPUs. These results overall show the benefits of using a GPU accelerated approach to edge detection, with further improvements left to achieve.
引用
收藏
页码:419 / 425
页数:7
相关论文
共 50 条
  • [31] Detection of Structural Tampering in a Digital Image Using Canny Edge Detector
    Mall, Vinod
    Roy, Anil K.
    Mitra, Suman K.
    Shukla, Shivanshu
    2013 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2013,
  • [32] Image Watermarking Using Least Significant Bit and Canny Edge Detection
    Faheem, Zaid Bin
    Ishaq, Abid
    Rustam, Furqan
    de la Torre Diez, Isabel
    Gavilanes, Daniel
    Vergara, Manuel Masias
    Ashraf, Imran
    SENSORS, 2023, 23 (03)
  • [33] Parallelizing and Optimizing LIP-Canny Using NVIDIA CUDA
    Palomar, Rafael
    Palomares, Jose M.
    Castillo, Jose M.
    Olivares, Joaquin
    Gomez-Luna, Juan
    TRENDS IN APPLIED INTELLIGENT SYSTEMS, PT III, PROCEEDINGS, 2010, 6098 : 389 - 398
  • [34] Multiple string matching on a GPU using CUDA
    Kouzinopoulos, Charalampos S.
    Michailidis, Panagiotis D.
    Margaritis, Konstantinos G.
    Scalable Computing, 2015, 16 (02): : 121 - 137
  • [35] MULTIPLE STRING MATCHING ON A GPU USING CUDA
    Kouzinopoulos, Charalampos S.
    Michailidis, Panagiotis D.
    Margaritis, Konstantinos G.
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2015, 16 (02): : 121 - 137
  • [36] Parallelization and Optimization of SIFT on GPU Using CUDA
    Zhou, Yonglong
    Mei, Kuizhi
    Ji, Xiang
    Dong, Peixiang
    2013 IEEE 15TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2013 IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (HPCC_EUC), 2013, : 1351 - 1358
  • [37] GPU Acceleration using CUDA for Computational Electromagnetics
    Sideris, Constantine
    2024 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM, ACES 2024, 2024,
  • [38] Singular Value Decomposition on GPU using CUDA
    Lahabar, Sheetal
    Narayanan, P. J.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-5, 2009, : 840 - 849
  • [39] GPU Acceleration of PROPELLER MRI Using CUDA
    Guo, Hongyu
    Dai, Jianping
    Guo, Hongyu
    He, Yanfa
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 2051 - +
  • [40] String Matching on a multicore GPU using CUDA
    Kouzinopoulos, Charalampos S.
    Margaritis, Konstantinos G.
    13TH PANHELLENIC CONFERENCE ON INFORMATICS, PROCEEDINGS, 2009, : 14 - 18